咨询与建议

限定检索结果

文献类型

  • 671 篇 期刊文献
  • 579 篇 会议

馆藏范围

  • 1,250 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 768 篇 工学
    • 518 篇 计算机科学与技术...
    • 433 篇 软件工程
    • 173 篇 信息与通信工程
    • 134 篇 生物工程
    • 92 篇 电气工程
    • 86 篇 控制科学与工程
    • 83 篇 电子科学与技术(可...
    • 75 篇 光学工程
    • 66 篇 生物医学工程(可授...
    • 44 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 27 篇 动力工程及工程热...
    • 23 篇 材料科学与工程(可...
    • 23 篇 土木工程
    • 22 篇 建筑学
  • 563 篇 理学
    • 275 篇 数学
    • 179 篇 物理学
    • 151 篇 生物学
    • 92 篇 统计学(可授理学、...
    • 47 篇 化学
    • 46 篇 地球物理学
    • 42 篇 系统科学
  • 208 篇 管理学
    • 111 篇 图书情报与档案管...
    • 105 篇 管理科学与工程(可...
    • 37 篇 工商管理
  • 58 篇 医学
    • 44 篇 临床医学
    • 42 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 27 篇 法学
    • 27 篇 社会学
  • 12 篇 农学
  • 10 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 43 篇 feature extracti...
  • 37 篇 deep learning
  • 35 篇 training
  • 33 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 28 篇 machine learning
  • 28 篇 data models
  • 27 篇 accuracy
  • 16 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 reinforcement le...
  • 15 篇 convolution
  • 15 篇 artificial intel...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data
  • 13 篇 data mining

机构

  • 62 篇 national enginee...
  • 53 篇 university of ch...
  • 53 篇 beijing advanced...
  • 40 篇 shenzhen researc...
  • 33 篇 chongqing key la...
  • 32 篇 institute of com...
  • 23 篇 peng cheng labor...
  • 22 篇 college of compu...
  • 21 篇 school of cyber ...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 19 篇 ifpu institute f...
  • 18 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 17 篇 institute of inf...
  • 17 篇 center for data ...
  • 16 篇 school of comput...
  • 16 篇 secure computing...
  • 16 篇 beijing advanced...

作者

  • 30 篇 shen linlin
  • 24 篇 huang qingming
  • 20 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 15 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,161 篇 英文
  • 79 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1250 条 记 录,以下是961-970 订阅
排序:
MS-GWNN:Multi-Scale Graph Wavelet Neural Network for Breast Cancer Diagnosis
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Mo Li, Quanzheng Center for Data Science Peking University Beijing100871 China Center for Data Science in Health and Medicine Peking University Beijing100871 China Laboratory for Biomedical Image Analysis Beijing Institute of Big Data Research Beijing100871 China Center for Advanced Medical Computing and Analysis MGH/BWH Center for Clinical Data Science Department of Radiology Massachusetts General Hospital Harvard Medical School BostonMA02115 United States
Breast cancer is one of the most common cancers in women worldwide, and early detection can significantly reduce the mortality rate of breast cancer. It is crucial to take multiscale information of tissue structure in... 详细信息
来源: 评论
Convergence Analysis of an SLF-NMU Algorithm for Non-negative Latent Factor Analysis on a High-Dimensional and Sparse Matrix
Convergence Analysis of an SLF-NMU Algorithm for Non-negativ...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Zhigang Liu Xin Luo Chongqing Engineering Research Center of Big Data Application for Smart Cities and Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
Non-negative latent factor (NLF) models have been frequently applied to information extraction, pattern recognition, and community detection. An NLF model can well represent a high-dimensional and sparse (HiDS) matrix... 详细信息
来源: 评论
Supervised deep semantics-preserving hashing for real-time pulmonary nodule image retrieval
Supervised deep semantics-preserving hashing for real-time p...
收藏 引用
作者: Qi, Yongjun Gu, Junhua Zhang, Yajuan Wu, Gengshen Wang, Feng State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin China Laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin China Information Technology Center North China Institute of Aerospace Engineering Langfang China School of Artificial Intelligence Hebei University of Technology Tianjin China School of Computing and Communications Lancaster University Lancaster United Kingdom Hebei Province Key Laboratory of Big Data Calculation Hebei University of Technology Tianjin China
Hashing-based medical image retrieval has drawn extensive attention recently, which aims at providing effective aided diagnosis for medical personnel. In the paper, a novel deep hashing framework is proposed in the me... 详细信息
来源: 评论
A Nonlinear Proportional Integral Derivative-Incorporated Stochastic Gradient Descent-based Latent Factor Model
A Nonlinear Proportional Integral Derivative-Incorporated St...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Jinli Li Ye Yuan Computer School China West Normal University Nanchong China Chongqing Institute of Green and Intelligent Technology Chongqing China Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China University of Chinese Academy of Sciences Beijing China
Recommender system (RS) commonly describes its user-item preferences with a high-dimensional and sparse (HiDS) matrix. A latent factor (LF) model relying on stochastic gradient descent (SGD) is frequently adopted to e... 详细信息
来源: 评论
FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery
arXiv
收藏 引用
arXiv 2021年
作者: Sun, Xian Wang, Peijin Yan, Zhiyuan Wang, Cheng Diao, Wenhui Chen, Jin Li, Jihao Feng, Yingchao Xu, Tao Weinmann, Martin Hinz, Stefan Fu, Kun Aerospace Information Research Institute Chinese Academy of Sciences Beijing100190 China School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing100049 China Aerospace Information Research Institute Chinese Academy of Sciences Beijing100190 China Fujian Key Laboratory of Sensing and Computing for Smart Cities School of Information Science and Engineering Xiamen University Xiamen361005 China Fujian Collaborative Innovation Center for Big Data Applications in Governments Fuzhou350003 China Beijing Remote Sensing Information Institute Beijing100011 China Institute of Photogrammetry and Remote Sensing Karlsruhe Institute of Technology Karlsruhe Germany
With the rapid development of deep learning, many deep learning based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. data directly i... 详细信息
来源: 评论
Advanced Spin Orbit Torque Magnetic Random Access Memory with Field-Free Switching Schemes (Invited)
Advanced Spin Orbit Torque Magnetic Random Access Memory wit...
收藏 引用
International Conference on Solid-State and Integrated Circuit Technology
作者: Chao Wang Zhaohao Wang Shouzhong Peng Youguang Zhang Weisheng Zhao Fert Beijing Research Institute Beihang University Beijing China School of Electronics and Information Engineering Beihang University Beijing China School of Microelectronics Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
Magnetic random access memory (MRAM) is considered a promising candidate for future both standalone and embedded memory technology. The emerging spin orbit torque (SOT) mechanism is expected to alternate the tradition... 详细信息
来源: 评论
DP Compress: a Model Compression Scheme for Generating Efficient Deep Potential Models
arXiv
收藏 引用
arXiv 2021年
作者: Lu, Denghui Jiang, Wanrun Chen, Yixiao Zhang, Linfeng Jia, Weile Wang, Han Chen, Mohan HEDPS CAPT College of Engineering Peking University Beijing100871 China Songshan Lake Materials Laboratory Guangdong Dongguan523808 China Institute of Physics Chinese Academy of Sciences Beijing100190 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Beijing Institute of Big Data Research Beijing100871 China Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China
Machine-learning-based interatomic potential energy surface (PES) models are revolutionizing the field of molecular modeling. However, although much faster than electronic structure schemes, these models suffer from c... 详细信息
来源: 评论
Beyond triplet loss: Person re-identification with fine-grained difference-aware pairwise loss
arXiv
收藏 引用
arXiv 2020年
作者: Yan, Cheng Pang, Guansong Bai, Xiao Zhou, Jun Gu, Lin School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China School of Computer Science University of Adelaide Austria School of Information and Communication Technology Griffith University Australia National Institute of Informatics University of Tokyo Japan
Person Re-IDentification (ReID) aims at re-identifying persons from different viewpoints across multiple cameras. Capturing the fine-grained appearance differences is often the key to accurate person ReID, because man... 详细信息
来源: 评论
Field-free Deterministic Magnetization Switching Induced by Interlaced Spin-Orbit Torques
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Min Wang, Zhaohao Wang, Chao Zhao, Weisheng Fert Beijing Research Institute Beihang University Beijing China School of Microelectronics Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China School of Electronics and Information Engineering Beihang University Beijing China
Spin-orbit torque (SOT) based magnetic random access memory (MRAM) is envisioned as an emerging non-volatile memory due to its ultra-high speed and low power consumption. The field-free switching schema in SOT devices... 详细信息
来源: 评论
TCIM: Triangle counting acceleration with processing-in-MRAM architecture
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Xueyan Yang, Jianlei Zhao, Yinglin Qi, Yingjie Liu, Meichen Cheng, Xingzhou Jia, Xiaotao Chen, Xiaoming Qu, Gang Zhao, Weisheng Fert Beijing Research Institute School of Microelectronics Beihang University Beijing China School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Institute of Computing Technology Chinese Academy of Sciences Beijing China Department of Electrical and Computer Engineering University of Maryland College ParkMD United States
Triangle counting (TC) is a fundamental problem in graph analysis and has found numerous applications, which motivates many TC acceleration solutions in the traditional computing platforms like GPU and FPGA. However, ... 详细信息
来源: 评论