咨询与建议

限定检索结果

文献类型

  • 49 篇 会议
  • 44 篇 期刊文献

馆藏范围

  • 93 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 44 篇 计算机科学与技术...
    • 41 篇 软件工程
    • 14 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 11 篇 电气工程
    • 9 篇 机械工程
    • 8 篇 生物工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 水利工程
  • 36 篇 理学
    • 12 篇 生物学
    • 11 篇 数学
    • 7 篇 物理学
    • 5 篇 化学
    • 5 篇 统计学(可授理学、...
    • 3 篇 大气科学
    • 2 篇 海洋科学
  • 16 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 7 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 3 篇 农学
  • 2 篇 法学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 4 篇 machine learning
  • 3 篇 deep learning
  • 3 篇 feature extracti...
  • 2 篇 power demand
  • 2 篇 internet of thin...
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 motion planning
  • 2 篇 recommender syst...
  • 2 篇 brain modeling
  • 2 篇 cameras
  • 2 篇 resource managem...
  • 2 篇 5g mobile commun...
  • 2 篇 contrastive lear...
  • 2 篇 computational mo...
  • 2 篇 extraction
  • 2 篇 emotion recognit...
  • 2 篇 accuracy
  • 2 篇 collaboration
  • 2 篇 streaming media

机构

  • 20 篇 school of artifi...
  • 17 篇 key laboratory o...
  • 8 篇 school of comput...
  • 7 篇 china light indu...
  • 7 篇 state key labora...
  • 5 篇 china national l...
  • 3 篇 gaoling school o...
  • 3 篇 information secu...
  • 3 篇 college of infor...
  • 3 篇 guizhou universi...
  • 3 篇 beijing key labo...
  • 2 篇 institute of ind...
  • 2 篇 oil production p...
  • 2 篇 tsinghua univers...
  • 2 篇 institute of com...
  • 2 篇 school of comput...
  • 2 篇 graduate school ...
  • 2 篇 school of artifi...
  • 2 篇 key laboratory o...
  • 2 篇 artificial intel...

作者

  • 12 篇 lian xiaoqin
  • 11 篇 gao chao
  • 7 篇 xiaoqin lian
  • 7 篇 gong yonggang
  • 6 篇 chao gao
  • 5 篇 li jin
  • 5 篇 xu jiping
  • 5 篇 guan wenyang
  • 5 篇 wu yelan
  • 4 篇 zhao zhiyao
  • 4 篇 jiping xu
  • 4 篇 wenyang guan
  • 4 篇 li jian
  • 4 篇 yonggang gong
  • 4 篇 zhiyao zhao
  • 3 篇 yu chongchong
  • 3 篇 yuan xin
  • 3 篇 yelan wu
  • 3 篇 mi jiachen
  • 3 篇 feng zhiyong

语言

  • 87 篇 英文
  • 6 篇 其他
检索条件"机构=Big Data and Industrial Intelligence Networking Technology Laboratory"
93 条 记 录,以下是81-90 订阅
排序:
A multipoint guidance mechanism for ß-barrel folding on the SAM complex (vol 30, pg 176, 2023)
收藏 引用
NATURE STRUCTURAL & MOLECULAR BIOLOGY 2023年 第2期30卷 233-233页
作者: Takeda, Hironori Busto, Jon V. Lindau, Caroline Tsutsumi, Akihisa Tomii, Kentaro Imai, Kenichiro Yamamori, Yu Hirokawa, Takatsugu Motono, Chie Ganesan, Iniyan Wenz, Lena-Sophie Becker, Thomas Kikkawa, Masahide Pfanner, Nikolaus Wiedemann, Nils Endo, Toshiya Faculty of Life Sciences Kyoto Sangyo University Kyoto Japan Institute of Biochemistry and Molecular Biology Centre for Biochemistry and Molecular Cell Research Faculty of Medicine University of Freiburg Freiburg Germany Department of Cell Biology and Anatomy Graduate School of Medicine The University of Tokyo Tokyo Japan Artificial Intelligence Research Center National Institute of Advanced Industrial Science and Technology (AIST) Tokyo Japan Cellular and Molecular Biotechnology Research Institute AIST Tokyo Japan Division of Biomedical Science Faculty of Medicine University of Tsukuba Tsukuba Japan Transborder Medical Research Center University of Tsukuba Tsukuba Japan Computational Bio Big-Data Open Innovation Laboratory AIST Waseda University Tokyo Japan Institute of Biochemistry and Molecular Biology Faculty of Medicine University of Bonn Bonn Germany CIBSS Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany BIOSS Centre for Biological Signalling Studies University of Freiburg Freiburg Germany Institute for Protein Dynamics Kyoto Sangyo University Kyoto Japan
Mitochondrial β-barrel proteins are essential for the transport of metabolites, ions and proteins. The sorting and assembly machinery (SAM) mediates their folding and membrane insertion. We report the cryo-electron m... 详细信息
来源: 评论
Neural networks for protein structure and function prediction and dynamic analysis
收藏 引用
Biophysical reviews 2020年 第2期12卷 569-573页
作者: Yuko Tsuchiya Kentaro Tomii Artificial Intelligence Research Center (AIRC) Tokyo Japan. Biotechnology Research Institute for Drug Discovery Tokyo Japan. Artificial Intelligence Research Center (AIRC) Tokyo Japan. k-tomii@aist.go.jp. Biotechnology Research Institute for Drug Discovery Tokyo Japan. k-tomii@aist.go.jp. Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL) National Institute of Advanced Industrial Science and Technology (AIST) 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan. k-tomii@aist.go.jp.
Hardware and software advancements along with the accumulation of large amounts of data in recent years have together spurred a remarkable growth in the application of neural networks to various scientific fields. Mac... 详细信息
来源: 评论
Neural multi-objective combinatorial optimization with diversity enhancement  23
Neural multi-objective combinatorial optimization with diver...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Jinbiao Chen Zizhen Zhang Zhiguang Cao Yaoxin Wu Yining Ma Te Ye Jiahai Wang School of Computer Science and Engineering Sun Yat-sen University P.R. China School of Computing and Information Systems Singapore Management University Singapore Department of Industrial Engineering & Innovation Sciences Eindhoven University of Technology Netherlands Department of Industrial Systems Engineering & Management National University of Singapore Singapore School of Computer Science and Engineering Sun Yat-sen University P.R. China and Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Sun Yat-sen University P.R. China and Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou P.R. China
Most of existing neural methods for multi-objective combinatorial optimization (MOCO) problems solely rely on decomposition, which often leads to repetitive solutions for the respective subproblems, thus a limited Par...
来源: 评论
SeismicNet: Physics-informed neural networks for seismic wave modeling in semi-infinite domain
arXiv
收藏 引用
arXiv 2022年
作者: Ren, Pu Rao, Chengping Chen, Su Wang, Jian-Xun Sun, Hao Liu, Yang Department of Civil and Environmental Engineering Northeastern University BostonMA02115 United States Department of Mechanical and Industrial Engineering Northeastern University BostonMA02115 United States Key Laboratory of Urban Security and Disaster Engineering The Ministry of Education Beijing University of Technology Beijing100124 China Department of Aerospace and Mechanical Engineering University of Notre Dame Notre DameIN46556 United States Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing100872 China School of Engineering Sciences University of Chinese Academy of Sciences Beijing101408 China
Recently, there has been an increasing interest in leveraging physics-informed neural networks (PINNs) for modeling dynamical systems. However, very limited studies have been conducted along this horizon on seismic wa... 详细信息
来源: 评论
Capture-seq protocol and TE-reX pipeline guidelines for detection of recombination of repeat elements in short- and long-DNA reads libraries
收藏 引用
STAR Protocols 2023年 第1期4卷
作者: Pascarella, Giovanni Straniero, Letizia Frith, Martin Carninci, Piero RIKEN Center for Integrative Medical Sciences (IMS) Yokohama 230-0045 Japan Department of Biomedical Sciences Humanitas University Milan 20072 Italy Humanitas Clinical and Research Center IRCCS Milan 20133 Italy Artificial Intelligence Research Center National Institute of Advanced Industrial Science and Technology (AIST) Tokyo 135-0064 Japan Graduate School of Frontier Sciences University of Tokyo Chiba 277-8562 Japan Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) AIST Tokyo 135-0064 Japan
Recombination of repeat elements is an important source of genomic variation in human tissues. Here, we describe steps to prepare libraries enriched for repeat elements starting from the genomic DNA of any species. We... 详细信息
来源: 评论
Utilization of machine learning and neural networks to optimize the enclosure angle, magnetic field, and radiation parameter for mixed convection of hybrid nanofluid flow next to assess environmental impact
收藏 引用
Engineering Analysis with Boundary Elements 2023年 146卷 252-262页
作者: Tao Hai Hayder A. Dhahad Masood Ashraf Ali Vishal Goyal Sattam Fahad Almojil Abdulaziz Ibrahim Almohana Abdulrhman Fahmi Alali Khaled Twfiq Almoalimi Farah Qasim Ahmed Alyousuf School of Computer and Information Qiannan Normal University for Nationalities Duyun Guizhou 558000 China Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Duyun Guizhou 558000 China Institute for Big Data Analytics and Artificial Intelligence (IBDAAI) Universiti Teknologi MARA Shah Alam Selangor 40450 Malaysia Mechanical Engineering Department University of Technology Baghdad Iraq Department of Industrial Engineering College of Engineering Prince Sattam bin Abdulaziz University Alkharj 16273 Saudi Arabia Department of Electronics and Communication Engineering GLA University Mathura India Department of Civil Engineering College of Engineering King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia Department of Information Technology College of Engineering and Computer Science Lebanese French University Kurdistan Region Iraq
This paper examines the mixed convective heat transfer (HTR) of nanofluid (NFD) flow in a rectangular enclosure with the upper moving wall numerically. The lower wall has a high temperature and a number of semi-circul... 详细信息
来源: 评论
Erratum to “ECMER: Edge-Cloud Collaborative Personalized Multimodal Emotion Recognition Framework in the Internet of Vehicles”
收藏 引用
IEEE Network 2024年 第3期38卷 292-292页
作者: Puning Zhang Miao Fu Rongjian Zhao Dapeng Wu Hongbin Zhang Zhigang Yang Ruyan Wang School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China and the Chongqing Key Laboratory of Ubiquitous Sensing and Networking Chongqing China Chongqing Innovation Center of Industrial Big-Data Company Ltd. Chongqing China
This addresses errors in [1] . There is incorrect author affiliation information in this article.
来源: 评论
Erratum to: Evotuning protocols for Transformer-based variant effect prediction on multi-domain proteins
收藏 引用
Briefings in bioinformatics 2021年 第6期22卷 bbab287页
作者: Hideki Yamaguchi Yutaka Saito Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8561 Japan. Artificial Intelligence Research Center National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku Tokyo 135-0064 Japan. AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) Shinjuku-ku Tokyo 169-8555 Japan.
来源: 评论
Recombination of repeat elements generates somatic complexity in human genomes
收藏 引用
四川生理科学杂志 2022年 第7期44卷 1291-1291页
作者: Giovanni Pascarella RIKEN Center for Integrative Medical Sciences (IMS) Yokohama 230-0045 Japan Institute for Protein Research Osaka University Osaka 565-0871 Japan Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences The University of Tokyo Kashiwa 277-8562 Chiba Japan Department of Medicine University of California San Diego La Jolla CA 92093 USA Department of Cell and Molecular Biology Karolinska Institutet Stockholm 171 77 Sweden Stockholm University Frescativägen 114 19 Stockholm Sweden Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm 171 77 Sweden Science for Life Laboratory Tomtebodavägen 23 171 65 Solna Sweden Department of Neuropathology Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (TMGHIG) Tokyo 173-0015 Japan Central RNA Laboratory and Department of Neuroscience and Brain Technologies Istituto Italiano di Tecnologia (IIT) Genova 16163 Italy Artificial Intelligence Research Center National Institute of Advanced Industrial Science and Technology (AIST) Tokyo 135-0064 Japan Graduate School of Frontier Sciences University of Tokyo Chiba 277-8562 Japan Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) AIST Tokyo 135-0064 Japan Human Technopole Milan 20157 Italy
Non-allelic recombination between homologous repetitive elements contributes to evolution and human genetic ***,we combine short-and long-DNA read sequencing of repeat elements with a new bioinformatics pipeline to sh... 详细信息
来源: 评论
The Ninth Visual Object Tracking VOT2021 Challenge Results
The Ninth Visual Object Tracking VOT2021 Challenge Results
收藏 引用
International Conference on Computer Vision Workshops (ICCV Workshops)
作者: Matej Kristan Jiří Matas Aleš Leonardis Michael Felsberg Roman Pflugfelder Joni-Kristian Kämäräinen Hyung Jin Chang Martin Danelljan Luka Čehovin Zajc Alan Lukežič Ondrej Drbohlav Jani Käpylä Gustav Häger Song Yan Jinyu Yang Zhongqun Zhang Gustavo Fernández Mohamed Abdelpakey Goutam Bhat Llukman Cerkezi Hakan Cevikalp Shengyong Chen Xin Chen Miao Cheng Ziyi Cheng Yu-Chen Chiu Ozgun Cirakman Yutao Cui Kenan Dai Mohana Murali Dasari Qili Deng Xingping Dong Daniel K. Du Matteo Dunnhofer Zhen-Hua Feng Zhiyong Feng Zhihong Fu Shiming Ge Rama Krishna Gorthi Yuzhang Gu Bilge Gunsel Qing Guo Filiz Gurkan Wencheng Han Yanyan Huang Felix Järemo Lawin Shang-Jhih Jhang Rongrong Ji Cheng Jiang Yingjie Jiang Felix Juefei-Xu Yin Jun Xiao Ke Fahad Shahbaz Khan Byeong Hak Kim Josef Kittler Xiangyuan Lan Jun Ha Lee Bastian Leibe Hui Li Jianhua Li Xianxian Li Yuezhou Li Bo Liu Chang Liu Jingen Liu Li Liu Qingjie Liu Huchuan Lu Wei Lu Jonathon Luiten Jie Ma Ziang Ma Niki Martinel Christoph Mayer Alireza Memarmoghadam Christian Micheloni Yuzhen Niu Danda Paudel Houwen Peng Shoumeng Qiu Aravindh Rajiv Muhammad Rana Andreas Robinson Hasan Saribas Ling Shao Mohamed Shehata Furao Shen Jianbing Shen Kristian Simonato Xiaoning Song Zhangyong Tang Radu Timofte Philip Torr Chi-Yi Tsai Bedirhan Uzun Luc Van Gool Paul Voigtlaender Dong Wang Guangting Wang Liangliang Wang Lijun Wang Limin Wang Linyuan Wang Yong Wang Yunhong Wang Chenyan Wu Gangshan Wu Xiao-Jun Wu Fei Xie Tianyang Xu Xiang Xu Wanli Xue Bin Yan Wankou Yang Xiaoyun Yang Yu Ye Jun Yin Chengwei Zhang Chunhui Zhang Haitao Zhang Kaihua Zhang Kangkai Zhang Xiaohan Zhang Xiaolin Zhang Xinyu Zhang Zhibin Zhang Shaochuan Zhao Ming Zhen Bineng Zhong Jiawen Zhu Xue-Feng Zhu University of Ljubljana Slovenia Czech Technical University Czech Republic University of Birmingham United Kingdom Linköping University Sweden Austrian Institute of Technology Austria TU Wien Austria Tampere University Finland ETH Zurich Switzerland University of British Columbia Canada Istanbul Technical University Turkey Eskisehir Osmangazi University Turkey Tianjin University of Technology China Dalian University of Technology China Zhejiang Dahua Technology CO China Kyushu University Japan Tamkang University Taiwan Nanjing University China Indian Institute of Technology Tirupati India ByteDance China Inception Institute of Artificial Intelligence China University of Udine Italy University of Surrey United Kingdom Tianjin University China Beihang University China University of Chinese Academy of Science China SIMIT China Nanyang Technological University Singapore Beijing Institute of Technology China Fuzhou University China Xiamen University China Jiangnan University China Alibaba Group USA Mohamed Bin Zayed University of Artificial Intelligence UAE Korea Institute of Industrial Technology (KITECH) Korea Hong Kong Baptist University China RWTH Aachen University Germany Guangxi Normal University China JD Finance America Corporation USA Shenzhen Research Institute of Big Data China Peng Cheng Laboratory China Huaqiao University China University of Isfahan Iran Microsoft Research Asia China Eskisehir Technical University Turkey University of Oxford United Kingdom University of Science and Technology of China China Sun Yat-sen University China Penn State University USA Southeast University China Remark AI United Kingdom Dalian Maritime University China Nanjing University of Information Science and Technology China
The Visual Object Tracking challenge VOT2021 is the ninth annual tracker benchmarking activity organized by the VOT initiative. Results of 71 trackers are presented; many are state-of-the-art trackers published at maj...
来源: 评论