咨询与建议

限定检索结果

文献类型

  • 92 篇 期刊文献
  • 21 篇 会议

馆藏范围

  • 113 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 61 篇 计算机科学与技术...
    • 40 篇 电气工程
    • 19 篇 信息与通信工程
    • 9 篇 软件工程
    • 6 篇 控制科学与工程
    • 6 篇 生物医学工程(可授...
    • 6 篇 生物工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 2 篇 石油与天然气工程
  • 26 篇 理学
    • 11 篇 生物学
    • 6 篇 数学
    • 4 篇 地球物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 物理学
  • 18 篇 医学
    • 11 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 3 篇 公共卫生与预防医...
    • 2 篇 医学技术(可授医学...
  • 13 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 公共管理
  • 3 篇 经济学
    • 2 篇 理论经济学
    • 1 篇 应用经济学
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 外国语言文学

主题

  • 8 篇 task analysis
  • 7 篇 deep learning
  • 7 篇 security
  • 6 篇 internet of thin...
  • 6 篇 costs
  • 6 篇 feature extracti...
  • 5 篇 federated learni...
  • 5 篇 training
  • 4 篇 deep neural netw...
  • 4 篇 electronic mail
  • 4 篇 optimization
  • 4 篇 graph neural net...
  • 4 篇 predictive model...
  • 4 篇 machine learning
  • 4 篇 blockchain
  • 3 篇 medical imaging
  • 3 篇 convolution
  • 3 篇 prediction
  • 3 篇 servers
  • 3 篇 semantics

机构

  • 14 篇 south ural state...
  • 7 篇 peking univ ctr ...
  • 7 篇 huaqiao univ xia...
  • 7 篇 huaqiao univ fuj...
  • 5 篇 peking univ ctr ...
  • 5 篇 national enginee...
  • 4 篇 guangdong key la...
  • 4 篇 sun yat sen univ...
  • 4 篇 huaqiao univ fuj...
  • 4 篇 peking univ natl...
  • 4 篇 peking univ beij...
  • 4 篇 center for machi...
  • 4 篇 institute of adv...
  • 4 篇 mohamed bin zaye...
  • 4 篇 peking univ chan...
  • 4 篇 huaqiao univ dep...
  • 4 篇 institute of com...
  • 3 篇 big data institu...
  • 3 篇 islamic univ col...
  • 3 篇 beijing univ tec...

作者

  • 19 篇 kumar sachin
  • 8 篇 guizani mohsen
  • 6 篇 lei qing
  • 6 篇 zhang hong-bo
  • 5 篇 wang ran
  • 5 篇 du ji-xiang
  • 5 篇 chen sihong
  • 5 篇 shen haojing
  • 5 篇 liu jing-hua
  • 4 篇 zhao jie
  • 4 篇 alkhayyat ahmed
  • 4 篇 dong bin
  • 4 篇 zhang li
  • 4 篇 shankar k.
  • 3 篇 peng shu-juan
  • 3 篇 liu xin
  • 3 篇 rajendran surend...
  • 3 篇 wang xizhao
  • 3 篇 qi yuankai
  • 3 篇 vaiyapuri thavav...

语言

  • 107 篇 英文
  • 6 篇 其他
检索条件"机构=Big Data and Machine Learning Lab"
113 条 记 录,以下是31-40 订阅
Novel kernel density estimator based on ensemble unbiased cross-validation
收藏 引用
INFORMATION SCIENCES 2021年 581卷 327-344页
作者: He, Yu-Lin Ye, Xuan Huang, De-Fa Huang, Joshua Zhexue Zhai, Jun-Hai Shenzhen Univ Big Data Inst Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Shenzhen Univ Natl Engn Lab Big Data Syst Comp Technol Shenzhen 518060 Peoples R China Hebei Univ Coll Math & Informat Sci Hebei Key Lab Machine Learning & Computat Intelli Baoding 071002 Peoples R China
Unbiased cross-validation (UCV) is a commonly-used method to calculate the optimal bandwidth for the kernel density estimator (KDE), which estimates the underlying probability density function (PDF) for a given data s... 详细信息
来源: 评论
Towards Efficient Cross-Modal Anomaly Detection Using Triple-Adaptive Network and Bi-Quintuple Contrastive learning
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2024年 第1期8卷 697-709页
作者: Peng, Shu-Juan Fan, Ye Cheung, Yiu-ming Liu, Xin Cui, Zhen Li, Taihao Huaqiao Univ Dept Artificial Intelligence Xiamen 361021 Peoples R China Artificial Intelligence Res Inst Zhejiang Lab Hangzhou 311121 Peoples R China Fujian Prov Univ Huaqiao Univ Key Lab Comp Vis & Machine Learning Xiamen 361021 Peoples R China Xiamen Key Lab Comp Vis & Pattern Recognit Xiamen 361021 Peoples R China Huaqiao Univ Fujian Key Lab Big Data Intelligence & Secur Xiamen 361021 Peoples R China Hong Kong Baptist Univ Dept Comp Sci Hong Kong Peoples R China Nanjing Univ Sci & Technol Key Lab Intelligent Percept & Syst High Dimens Inf Minist Educ Nanjing 210094 Peoples R China
Cross-modal anomaly detection is a relatively new and challenging research topic in machine learning field, which aims at identifying the anomalies whose patterns are disparate across different modalities. As far as w... 详细信息
来源: 评论
MSI-UNET: A FLEXIBLE UNET-BASED MULTI-SCALE INTERACTIVE FRAMEWORK FOR 3D GASTRIC TUMOR SEGMENTATION ON CT SCANS  21
MSI-UNET: A FLEXIBLE UNET-BASED MULTI-SCALE INTERACTIVE FRAM...
收藏 引用
21st IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Chen, Heyun Chen, Zifan Zhao, Jie Li, Haoshen Li, Jiazheng Liu, Yiting Yuan, Mingze Bao, Peng Nan, Xinyu Dong, Bin Tang, Lei Zhang, Li Peking Univ Ctr Data Sci Beijing Peoples R China Peking Univ Natl Engn Lab Big Data Anal & Applicat Beijing Peoples R China Peking Univ Canc Hosp & Inst Beijing Peoples R China Peking Univ Beijing Int Ctr Math Res Beijing Peoples R China Peking Univ Ctr Machine Learning Res Beijing Peoples R China Peking Univ Changsha Inst Comp & Digital Econ Beijing Peoples R China
Accurate segmentation of gastric tumors is critical yet presents a formidable challenge in medical imaging, where conventional UNet-based frameworks, despite their prevalence, falter on intricate tumor samples due to ... 详细信息
来源: 评论
FedDP-SA: Boosting Differentially Private Federated learning via Local data Set Splitting
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2024年 第19期11卷 31687-31698页
作者: Liu, Xuezheng Zhou, Yipeng Wu, Di Hu, Miao Hui Wang, Jessie Guizani, Mohsen Sun Yat Sen Univ Sch Comp Sci & Engn Guangdong Key Lab Big Data Anal & Proc Guangzhou 510006 Peoples R China Macquarie Univ Fac Sci & Engn Dept Comp Sydney NSW 2109 Australia Tsinghua Univ Inst Network Sci & Cyberspace Beijing 100084 Peoples R China Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Beijing 100084 Peoples R China Mohamed bin Zayed Univ Artificial Intelligence Machine Learning Dept Abu Dhabi U Arab Emirates
Federated learning (FL) emerges as an attractive collaborative machine learning framework that enables training of models across decentralized devices by merely exposing model parameters. However, malicious attackers ... 详细信息
来源: 评论
Computationally Efficient Approximations for Matrix-Based Renyi's Entropy
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2022年 70卷 6170-6184页
作者: Gong, Tieliang Dong, Yuxin Yu, Shujian Dong, Bo Jiaotong Univ Sch Comp Sci & Technol Xian 710049 Peoples R China Shaanxi Prov Key Lab Big Data Knowledge Engn Xian 710049 Peoples R China UiT Arctic Univ Norway Machine Learning Grp N-9019 Tromso Norway Vrije Univ Amsterdam Dept Comp Sci NL-1081 HV Amsterdam Netherlands
The recently developed matrix-based Renyi's alpha-order entropy enables measurement of information in data simply using the eigenspectrum of symmetric positive semi-definite (PSD) matrices in reproducing kernel Hi... 详细信息
来源: 评论
Modified metaheuristics with stacked sparse denoising autoencoder model for cervical cancer classification
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2022年 103卷
作者: Vaiyapuri, Thavavel Alaskar, Haya Syed, Liyakathunisa Aljohani, Eman Alkhayyat, Ahmed Shankar, K. Kumar, Sachin Prince Sattam Bin Abdulaziz Univ Coll Comp Engn & Sci Dept Comp Sci Al Kharj Saudi Arabia Taibah Univ Coll Comp Sci & Engn Dept Comp Sci Madinah Saudi Arabia Islamic Univ Coll Tech Engn Najaf Iraq South Ural State Univ Big Data & Machine Learning Lab Chelyabinsk 454080 Russia
Cervical cancer is the most commonly diagnosed cancer among women globally, with high mortality rate. For early diagnosis, automated and accurate cervical cancer classification ap-proaches can be developed through eff... 详细信息
来源: 评论
Spatial transition tensor of single cells
收藏 引用
NATURE METHODS 2024年 第6期21卷 1053-1062页
作者: Zhou, Peijie Bocci, Federico Li, Tiejun Nie, Qing Univ Calif Irvine Dept Math Irvine CA 92697 USA Peking Univ LMAM Beijing Peoples R China Peking Univ Sch Math Sci Beijing Peoples R China Univ Calif Irvine Dept Cell & Dev Biol Irvine CA 92697 USA Peking Univ Ctr Machine Learning Res Beijing Peoples R China AI Sci Inst Beijing Peoples R China Natl Engn Lab Big Data Anal & Applicat Beijing Peoples R China
Spatial transcriptomics and messenger RNA splicing encode extensive spatiotemporal information for cell states and transitions. The current lineage-inference methods either lack spatial dynamics for state transition o... 详细信息
来源: 评论
CPFedAvg: Enhancing Hierarchical Federated learning via Optimized Local Aggregation and Parameter Mixing
IEEE TRANSACTIONS ON NETWORKING
收藏 引用
IEEE TRANSACTIONS ON NETWORKING 2025年 第3期33卷 1160-1173页
作者: Liu, Xuezheng Zhou, Yipeng Wu, Di Hu, Miao Chen, Min Guizani, Mohsen Sheng, Quan Z. Sun Yat sen Univ Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China Guangdong Key Lab Big Data Anal & Proc Guangzhou 510006 Peoples R China Macquarie Univ Fac Sci & Engn Sch Comp Sydney NSW 2109 Australia South China Univ Technol Sch Comp Sci & Engn Guangzhou 510640 Peoples R China Pazhou Lab Guangzhou 510640 Peoples R China Mohamed BinZayed Univ Artificial Intelligence MBZU Machine Learning Dept Abu Dhabi U Arab Emirates
Hierarchical federated learning (HFL) improves the scalability and efficiency of traditional federated learning (FL) by incorporating a hierarchical topology into the FL framework. In a typical HFL system, clients are... 详细信息
来源: 评论
A Comprehensive Detection Method for the Lateral Movement Stage of APT Attacks
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2024年 第5期11卷 8440-8447页
作者: He, Daojing Gu, Hongjie Zhu, Shanshan Chan, Sammy Guizani, Mohsen Guizhou Univ State Key Lab Publ Big Data Guiyang 550025 Guizhou Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Shenzhen 518055 Peoples R China East China Normal Univ Sch Software Engn Shanghai 200241 Peoples R China Harbin Inst Technol Sch Econ & Management Shenzhen 518055 Peoples R China City Univ Hong Kong Dept Elect Engn Hong Kong Peoples R China Mohamed Bin Zayed Univ Artificial Intelligence Machine Learning Dept Abu Dhabi U Arab Emirates
Due to the outbreak of the new crown epidemic, more companies prefer to use telecommuting for work, which also provides more attack surfaces for APT attacks. After initially gaining access to the intranet, attackers w... 详细信息
来源: 评论
HC-TUS: Human Cognition-Based Trust Update Scheme for AI-Enabled VANET
收藏 引用
IEEE NETWORK 2023年 第5期37卷 247-252页
作者: Fang, Weidong Zhu, Chunsheng Guizani, Mohsen Rodrigues, Joel J. P. C. Zhang, Wuxiong Chinese Acad Sci Sci & Technol Microsyst Lab Shanghai Inst Microsyst & Informat Technol Shanghai Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Shanghai Res & Dev Ctr Micronano Elect Shanghai Peoples R China Shenzhen Technol Univ Coll Big Data & Internet Shenzhen Peoples R China Mohamed Bin Zayed Univ Artificial Intelligence MBZ Machine Learning Dept Abu Dhabi U Arab Emirates Lusofona Univ COPELABS Lisbon Portugal
Recently, Artificial Intelligence (AI) has received more attention for being used in many applications. It is expected to play a key role in Vehicular Ad Hoc Networks (VANET). On the other hand, AI-enabled VANET (AI-V... 详细信息
来源: 评论