咨询与建议

限定检索结果

文献类型

  • 31 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 工学
    • 18 篇 计算机科学与技术...
    • 18 篇 软件工程
    • 12 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 7 篇 电气工程
    • 5 篇 光学工程
    • 5 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 环境科学与工程(可...
  • 21 篇 理学
    • 9 篇 数学
    • 9 篇 生物学
    • 5 篇 物理学
    • 5 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 地质学
  • 9 篇 管理学
    • 5 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 7 篇 医学
    • 5 篇 临床医学
    • 3 篇 特种医学
    • 3 篇 医学技术(可授医学...
    • 1 篇 基础医学(可授医学...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 3 篇 deep learning
  • 3 篇 image segmentati...
  • 3 篇 data mining
  • 3 篇 contrastive lear...
  • 3 篇 large language m...
  • 3 篇 hypertension
  • 3 篇 semantics
  • 3 篇 feature extracti...
  • 3 篇 accuracy
  • 3 篇 data models
  • 2 篇 diabetes
  • 2 篇 cancer
  • 2 篇 deep neural netw...
  • 2 篇 recommender syst...
  • 2 篇 predictive model...
  • 2 篇 decoding
  • 2 篇 bifurcation
  • 2 篇 codes
  • 2 篇 diseases
  • 2 篇 collaboration

机构

  • 12 篇 center for machi...
  • 12 篇 center for data ...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 beijing internat...
  • 8 篇 school of comput...
  • 7 篇 national biomedi...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 4 篇 ux center neteas...
  • 4 篇 machine learning...
  • 3 篇 big data institu...
  • 3 篇 national enginee...
  • 3 篇 machine learning...
  • 2 篇 huaqiao universi...
  • 2 篇 the shenzhen key...
  • 2 篇 guangdong key la...
  • 2 篇 the college of m...
  • 2 篇 peking universit...

作者

  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 bin dong
  • 6 篇 zifan chen
  • 5 篇 zhao jie
  • 5 篇 haoshen li
  • 5 篇 dong bin
  • 5 篇 guizani mohsen
  • 5 篇 xia yong
  • 5 篇 xie yutong
  • 5 篇 zhang li
  • 4 篇 li haoshen
  • 4 篇 mohsen guizani
  • 4 篇 chen zifan
  • 3 篇 wang ran
  • 3 篇 mingze yuan
  • 3 篇 min chen
  • 3 篇 heyun chen
  • 3 篇 chen sihong
  • 3 篇 lei tang

语言

  • 39 篇 英文
  • 7 篇 其他
检索条件"机构=Big Data and Machine Learning Laboratory"
46 条 记 录,以下是1-10 订阅
排序:
Massive data clustering by multi-scale psychological observations
收藏 引用
National Science Review 2022年 第2期9卷 43-51页
作者: Shusen Yang Liwen Zhang Chen Xu Hanqiao Yu Jianqing Fan Zongben Xu National Engineering Laboratory of Big Data Analytics Xi'an Jiaotong University Industrial Artificial Intelligent Center Pazhou Laboratory Department of Mathematics and Statistics University of Ottawa Center for Statistics and Machine Learning Princeton University
Clustering is the discovery of latent group structure in data and is a fundamental problem in artificial intelligence,and a vital procedure in data-driven scientific research over all ***,existing methods have various... 详细信息
来源: 评论
A human-in-the-loop method for pulmonary nodule detection in CT scans
收藏 引用
Visual Intelligence 2024年 第1期2卷 1-13页
作者: Zeng, Qingjie Xie, Yutong Lu, Zilin Xia, Yong National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Northwestern Polytechnical University Xi’an 710072 China Australian Institute for Machine Learning The University of Adelaide Adelaide 5000 SA Australia
Automated pulmonary nodule detection using computed tomography scans is vital in the early diagnosis of lung cancer. Although extensive well-performed methods have been proposed for this task, they suffer from the dom... 详细信息
来源: 评论
Cross-Store Next-Basket Recommendation  24
Cross-Store Next-Basket Recommendation
收藏 引用
24th IEEE International Conference on data Mining, ICDM 2024
作者: Ma, Liang-Chen Li, Ya Mai, Zi-Feng Liang, Fei-Yao Wang, Chang-Dong Chen, Min Guizani, Mohsen School of Electronics and Information Guangdong Polytechnic Normal University Guangzhou China School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering South China University of Technology Guangzhou China Pazhou Laboratory Guangzhou China Machine Learning Department Abu Dhabi United Arab Emirates
Next-basket recommendation (NBR) infers a set of items that a user will interact with in the next basket. Existing methods often struggle with the data sparsity problem, particularly when the number of baskets is sign... 详细信息
来源: 评论
Contrastive learning for Adapting Language Model to Sequential Recommendation  24
Contrastive Learning for Adapting Language Model to Sequenti...
收藏 引用
24th IEEE International Conference on data Mining, ICDM 2024
作者: Liang, Fei-Yao Xi, Wu-Dong Xing, Xing-Xing Wan, Wei Wang, Chang-Dong Chen, Min Guizani, Mohsen School of Computer Science and Engineering Sun Yat-sen University Guangzhou China NetEase Games China UX Center NetEase Games Guangzhou China Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering South China University of Technology Guangzhou China Pazhou Laboratory Guangzhou China Machine Learning Department Abu Dhabi United Arab Emirates
With the explosive growth of information, recommendation systems have emerged to alleviate the problem of information overload. In order to improve the performance of recommendation systems, many existing methods intr... 详细信息
来源: 评论
RecCoder: Reformulating Sequential Recommendation as Large Language Model-Based Code Completion  24
RecCoder: Reformulating Sequential Recommendation as Large L...
收藏 引用
24th IEEE International Conference on data Mining, ICDM 2024
作者: Lai, Kai-Huang Xi, Wu-Dong Xing, Xing-Xing Wan, Wei Wang, Chang-Dong Chen, Min Guizani, Mohsen School of Computer Science and Engineering Sun Yat-sen University Guangzhou China NetEase Games China UX Center NetEase Games Guangzhou China Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering South China University of Technology Guangzhou China Pazhou Laboratory Guangzhou China Machine Learning Department Abu Dhabi United Arab Emirates
In the evolving landscape of sequential recommendation systems, the application of Large Language Models (LLMs) is increasingly prominent. However, current attempts typically utilize general-purpose LLMs, which presen... 详细信息
来源: 评论
Multi-Stage Bidirectional Cross-Attention Model for Predicting Prognosis in Multiple Peritoneum Lesions with Clinical Information  22
Multi-Stage Bidirectional Cross-Attention Model for Predicti...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Li, Haoshen Cai, Jieyuan Wei, Yiyuan Chen, Zifan Chen, Heyun Zhao, Jie Shi, Yanjie Dong, Bin Tang, Lei Zhang, Xiaotian Zhang, Li Center for Data Science Peking University China Peking University Cancer Hospital & Institute China Peking University National Engineering Laboratory for Big Data Analysis and Applications China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China Peking University Changsha Institute for Computing and Digital Economy China
Peritoneal metastasis occurs when cancer cells spread from the primary tumor to the peritoneum, leading to morphological alterations that significantly impact patient survival. The specific changes across multiple per... 详细信息
来源: 评论
U-Star: AN Asymmetric U-Shaped Network Based on Element-Wise Multiplication to Segment Nuclei in H&E Stained Histological Images  22
U-Star: AN Asymmetric U-Shaped Network Based on Element-Wise...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Yang, Guangzhengao Zhang, Li Zhao, Jie Chen, Zifan Li, Haoshen Dong, Bin Center for Data Science Peking University China Peking University National Engineering Laboratory for Big Data Analysis and Applications China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China National Biomedical Imaging Center Peking University China
Nuclei segmentation in Hematoxylin and Eosin (H&E) stained images plays a crucial role in cancer diagnosis and pathological evaluation, enabling pathologists to identify abnormal cells and assess their morphology ... 详细信息
来源: 评论
Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multimodal data
收藏 引用
Signal Transduction and Targeted Therapy 2024年 第9期9卷 4137-4148页
作者: Zifan Chen Yang Chen Yu Sun Lei Tang Li Zhang Yajie Hu Meng He Zhiwei Li Siyuan Cheng Jiajia Yuan Zhenghang Wang Yakun Wang Jie Zhao Jifang Gong Liying Zhao Baoshan Cao Guoxin Li Xiaotian Zhang Bin Dong Lin Shen Center for Data Science Peking UniversityBeijingChina Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Pathology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Radiology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina National Biomedical Imaging Center Peking UniversityBeijingChina Department of General Surgery Nanfang HospitalSouthern Medical UniversityGuangzhouChina Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor GuangzhouChina Department of Medical Oncology and Radiation Sickness Peking University Third HospitalBeijingChina National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijingChina Beijing International Center for Mathematical Research(BICMR) Peking UniversityBeijingChina Center for Machine Learning Research Peking UniversityBeijingChina
The sole use of single modality data often fails to capture the complex heterogeneity among patients,including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens,for the tre... 详细信息
来源: 评论
Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image Segmentation
收藏 引用
IEEE Transactions on Medical Imaging 2025年 PP卷 PP页
作者: Zeng, Qingjie Xie, Yutong Lu, Zilin Lu, Mengkang Wu, Yicheng Xia, Yong Northwestern Polytechnical University National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Xi’an710072 China The University of Adelaide Australian Institute for Machine Learning AdelaideSA5000 Australia Monash University Faculty of Information Technology Department of Data Science and AI Australia
The scarcity of annotations has become a significant obstacle in training powerful deep-learning models for medical image segmentation, limiting their clinical application. To overcome this, semi-supervised learning t... 详细信息
来源: 评论
RVPD: An Automated System for Calculating the Tortuosity and Bifurcation Angles of Retinal Vessels to Predict Diseases  22
RVPD: An Automated System for Calculating the Tortuosity and...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Yang, Guangzhengao Luo, Xingyu Zhao, Jie Fan, Fangfang Li, Haoshen Dong, Bin Zhang, Li Zhang, Yan Center for Data Science Peking University China Peking University First Hospital Department of Cardiology China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China National Biomedical Imaging Center Peking University China
Hypertension and diabetes are known to potentially cause morphological changes in the retinal capillary system, yet quantifying these changes presents significant challenges. This research addresses this issue by desi... 详细信息
来源: 评论