咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 45 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 18 篇 计算机科学与技术...
    • 17 篇 软件工程
    • 11 篇 生物工程
    • 8 篇 电气工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 5 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
  • 22 篇 理学
    • 10 篇 数学
    • 10 篇 生物学
    • 5 篇 物理学
    • 4 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 地质学
  • 9 篇 管理学
    • 5 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 8 篇 医学
    • 6 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 特种医学
    • 3 篇 医学技术(可授医学...
    • 2 篇 公共卫生与预防医...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 4 篇 image segmentati...
  • 3 篇 deep learning
  • 3 篇 data mining
  • 3 篇 contrastive lear...
  • 3 篇 large language m...
  • 3 篇 semantics
  • 3 篇 feature extracti...
  • 3 篇 accuracy
  • 3 篇 data models
  • 2 篇 cancer
  • 2 篇 deep neural netw...
  • 2 篇 recommender syst...
  • 2 篇 predictive model...
  • 2 篇 decoding
  • 2 篇 hypertension
  • 2 篇 codes
  • 2 篇 diseases
  • 2 篇 collaboration
  • 2 篇 adaptation model...
  • 1 篇 prompt engineeri...

机构

  • 12 篇 center for machi...
  • 12 篇 center for data ...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 beijing internat...
  • 8 篇 school of comput...
  • 7 篇 national biomedi...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 4 篇 ux center neteas...
  • 4 篇 machine learning...
  • 3 篇 big data institu...
  • 3 篇 national enginee...
  • 3 篇 machine learning...
  • 2 篇 the shenzhen key...
  • 2 篇 guangdong key la...
  • 2 篇 australian insti...
  • 2 篇 the college of m...
  • 2 篇 peking universit...

作者

  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 bin dong
  • 6 篇 zifan chen
  • 5 篇 zhao jie
  • 5 篇 haoshen li
  • 5 篇 dong bin
  • 5 篇 guizani mohsen
  • 5 篇 zhang li
  • 4 篇 xia yong
  • 4 篇 li haoshen
  • 4 篇 xie yutong
  • 4 篇 mohsen guizani
  • 4 篇 chen zifan
  • 3 篇 wang ran
  • 3 篇 mingze yuan
  • 3 篇 min chen
  • 3 篇 heyun chen
  • 3 篇 chen sihong
  • 3 篇 lei tang

语言

  • 43 篇 英文
  • 2 篇 其他
检索条件"机构=Big Data and Machine Learning Laboratory"
45 条 记 录,以下是11-20 订阅
FASTEN: Fuzzy Neural Support Vector machine for Classification
收藏 引用
IEEE Transactions on Fuzzy Systems 2025年
作者: Yuan, Zhian Qian, Yuhua Liang, Xinyan Kou, Yi Hou, Chenping Hu, Qinghua Shanxi University Institute of Big Data Science and Industry Key laboratory of Evolutionary Science Intelligence of Shanxi Province Shanxi Taiyuan030006 China National University of Defense Technology College of Science Hunan Changsha410073 China Tianjin University College of Intelligence and Computing Tianjin Key Laboratory of Machine Learning Tianjin300350 China
Classification tasks have long been a central concern in the field of machine learning. Although deep neural network-based approaches offer a novel, versatile and highly precise solution for classification tasks, the ... 详细信息
来源: 评论
Multi-Scale Clinical-Guided Binocular Fusion Framework for Predicting New-Onset Hypertension Over a Four-Year Period
Multi-Scale Clinical-Guided Binocular Fusion Framework for P...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Haoshen Li Zifan Chen Jie Zhao Heyun Chen Hexin Dong Mingze Yuan Bin Dong Li Zhang Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Hypertension is a major global health concern, linked to various cardiovascular diseases and associated with distinct ocular manifestations. While recent advances in artificial intelligence have enabled accurate diagn... 详细信息
来源: 评论
Multi-Stage Bidirectional Cross-Attention Model for Predicting Prognosis in Multiple Peritoneum Lesions with Clinical Information
Multi-Stage Bidirectional Cross-Attention Model for Predicti...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Haoshen Li Jieyuan Cai Yiyuan Wei Zifan Chen Heyun Chen Jie Zhao Yanjie Shi Bin Dong Lei Tang Xiaotian Zhang Li Zhang Center for Data Science Peking University China Peking University Cancer Hospital & Institute China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Peritoneal metastasis occurs when cancer cells spread from the primary tumor to the peritoneum, leading to morphological alterations that significantly impact patient survival. The specific changes across multiple per... 详细信息
来源: 评论
U-Star: AN Asymmetric U-Shaped Network Based on Element-Wise Multiplication to Segment Nuclei in H&E Stained Histological Images
U-Star: AN Asymmetric U-Shaped Network Based on Element-Wise...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Guangzhengao Yang Li Zhang Jie Zhao Zifan Chen Haoshen Li Bin Dong Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China National Biomedical Imaging Center Peking University China
Nuclei segmentation in Hematoxylin and Eosin (H&E) stained images plays a crucial role in cancer diagnosis and pathological evaluation, enabling pathologists to identify abnormal cells and assess their morphology ... 详细信息
来源: 评论
Discrepancy Matters: learning from Inconsistent Decoder Features for Consistent Semi-supervised Medical Image Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Qingjie Xie, Yutong Lu, Zilin Lu, Mengkang Xia, Yong The National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Northwestern Polytechnical University Xi’an710072 China The Australian Institute for Machine Learning The University of Adelaide AdelaideSA5000 Australia
Semi-supervised learning (SSL) has been proven beneficial for mitigating the issue of limited labeled data especially on the task of volumetric medical image segmentation. Unlike previous SSL methods which focus on ex... 详细信息
来源: 评论
MSI-UNet: A Flexible UNet-Based Multi-Scale Interactive Framework for 3D Gastric Tumor Segmentation on CT Scans
MSI-UNet: A Flexible UNet-Based Multi-Scale Interactive Fram...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Heyun Chen Zifan Chen Jie Zhao Haoshen Li Jiazheng Li Yiting Liu Mingze Yuan Peng Bao Xinyu Nan Bin Dong Lei Tang Li Zhang Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Peking University Cancer Hospital&Institute China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Accurate segmentation of gastric tumors is critical yet presents a formidable challenge in medical imaging, where conventional UNet-based frameworks, despite their prevalence, falter on intricate tumor samples due to ... 详细信息
来源: 评论
Deep-learning-enabled multimodal data fusion for lung disease classification
收藏 引用
Informatics in Medicine Unlocked 2023年 42卷
作者: Kumar, Sachin Ivanova, Olga Melyokhin, Artyom Tiwari, Prayag Big Data and Machine Learning Laboratory South Ural State University Chelyabinsk Russian Federation Computer Science Department South Ural State University Chelyabinsk Russian Federation Department of Computer Science Aalto University Espoo Finland
The recent pandemic has revealed the urgent need for lung disease diagnosis at early stages in humans. Deep learning-based automatic diagnosis methods typically rely on single-modality data such as medical imaging. Ho... 详细信息
来源: 评论
SIR-HCL: Semantic-Inconsistency Reasoning and Hybrid Contrastive learning for Efficient Cross-Emotion Anomaly Detection
收藏 引用
IEEE Transactions on Cognitive and Developmental Systems 2025年
作者: Liu, Xin Chen, Qiyan Cheung, Yiu-Ming Peng, Shu-Juan Huaqiao University Department of Computer Science Xiamen361021 China Hong Kong Baptist University Department of Computer Science SAR Hong Kong Hong Kong Xiamen Key Laboratory of Computer Vision and Pattern Recognition Xiamen361021 China Huaqiao University Fujian Key Laboratory of Big Data Intelligence and Security Xiamen361021 China Huaqiao University Department of Artificial Intelligence Xiamen China Fujian Province University Key Laboratory of Computer Vision and Machine Learning Huaqiao University Xiamen361021 China
Cross-emotion anomaly detection is an emerging and challenging research topic in cognitive analysis field, which aims at identifying the abnormal emotion pair whose semantic patterns are inconsistent across different ... 详细信息
来源: 评论
WiViPose: A Video-aided Wi-Fi Framework for Environment-Independent 3D Human Pose Estimation
收藏 引用
IEEE Transactions on Multimedia 2025年
作者: Zhang, Lei Ning, Haoran Tang, Jiaxin Chen, Zhenxiang Zhong, Yaping Han, Yahong Tianjin University College of Intelligence and Computing the Tianjin Key Laboratory of Advanced Network Technology and Application Tianjin300050 China Key Laboratory of Computing Power Network and Information Security Ministry of Education China University of Jinan Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing the School of Information Science and Engineering Jinan250022 China Wuhan Sports University Sports Big-data Research Center Wuhan430079 China Tianjin University College of Intelligence and Computing the Tianjin Key Laboratory of Machine Learning Tianjin300350 China
The inherent complexity of Wi-Fi signals makes video-aided Wi-Fi 3D pose estimation difficult. The challenges include the limited generalizability of the task across diverse environments, its significant signal hetero... 详细信息
来源: 评论
PAM: A Propagation-Based Model for Segmenting Any 3D Objects across Multi-Modal Medical Images
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zifan Nan, Xinyu Li, Jiazheng Zhao, Jie Li, Haifeng Lin, Ziling Li, Haoshen Chen, Heyun Liu, Yiting Tang, Lei Zhang, Li Dong, Bin Center for Data Science Peking University Beijing China Department of Radiology Key Laboratory of Carcinogenesis and Translational Research Ministry of Education Peking University Cancer Hospital and Institute Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Peking University Beijing China Center for Machine Learning Research Peking University Beijing China National Biomedical Imaging Center Peking University Beijing China
Background: Volumetric segmentation is crucial for medical imaging applications but faces significant challenges. Current approaches often require extensive manual annotations and scenario-specific model training, lim... 详细信息
来源: 评论