咨询与建议

限定检索结果

文献类型

  • 1,032 篇 会议
  • 731 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,764 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,103 篇 工学
    • 874 篇 计算机科学与技术...
    • 744 篇 软件工程
    • 260 篇 信息与通信工程
    • 192 篇 生物工程
    • 137 篇 控制科学与工程
    • 109 篇 电气工程
    • 85 篇 电子科学与技术(可...
    • 83 篇 生物医学工程(可授...
    • 73 篇 光学工程
    • 68 篇 机械工程
    • 65 篇 化学工程与技术
    • 46 篇 动力工程及工程热...
    • 34 篇 网络空间安全
    • 32 篇 建筑学
    • 31 篇 交通运输工程
    • 30 篇 土木工程
    • 29 篇 仪器科学与技术
  • 593 篇 理学
    • 343 篇 数学
    • 202 篇 生物学
    • 130 篇 统计学(可授理学、...
    • 99 篇 物理学
    • 71 篇 化学
    • 55 篇 系统科学
  • 342 篇 管理学
    • 196 篇 管理科学与工程(可...
    • 170 篇 图书情报与档案管...
    • 85 篇 工商管理
  • 64 篇 医学
    • 55 篇 临床医学
    • 49 篇 基础医学(可授医学...
    • 31 篇 药学(可授医学、理...
  • 54 篇 法学
    • 44 篇 社会学
  • 24 篇 经济学
  • 18 篇 教育学
  • 15 篇 农学
  • 4 篇 军事学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 70 篇 semantics
  • 70 篇 training
  • 67 篇 feature extracti...
  • 63 篇 deep learning
  • 40 篇 predictive model...
  • 36 篇 neural networks
  • 36 篇 data models
  • 34 篇 machine learning
  • 34 篇 accuracy
  • 32 篇 computational mo...
  • 29 篇 big data
  • 29 篇 convolution
  • 29 篇 federated learni...
  • 28 篇 reinforcement le...
  • 28 篇 graph neural net...
  • 27 篇 conferences
  • 27 篇 optimization
  • 27 篇 contrastive lear...
  • 27 篇 cloud computing
  • 26 篇 adaptation model...

机构

  • 269 篇 school of big da...
  • 126 篇 school of big da...
  • 112 篇 college of compu...
  • 108 篇 national enginee...
  • 67 篇 shenzhen researc...
  • 58 篇 school of softwa...
  • 56 篇 school of softwa...
  • 36 篇 college of compu...
  • 35 篇 key laboratory o...
  • 32 篇 key laboratory o...
  • 31 篇 college of big d...
  • 31 篇 peng cheng labor...
  • 30 篇 state key labora...
  • 29 篇 chongqing univer...
  • 27 篇 college of compu...
  • 27 篇 school of comput...
  • 27 篇 school of softwa...
  • 26 篇 school of inform...
  • 24 篇 school of cyber ...
  • 23 篇 big data institu...

作者

  • 52 篇 shi qingjiang
  • 39 篇 shen linlin
  • 30 篇 qingjiang shi
  • 26 篇 huang sheng
  • 24 篇 zhang hongyu
  • 22 篇 xiuhua li
  • 22 篇 gao min
  • 21 篇 junhao wen
  • 19 篇 li leixiao
  • 19 篇 meng yan
  • 19 篇 yan meng
  • 19 篇 li jianqiang
  • 18 篇 dai fei
  • 17 篇 hongyu zhang
  • 17 篇 li liu
  • 17 篇 zhang xiaohong
  • 17 篇 hu chunqiang
  • 16 篇 hu shengshan
  • 16 篇 huang joshua zhe...
  • 16 篇 liu li

语言

  • 1,368 篇 英文
  • 383 篇 其他
  • 18 篇 中文
  • 1 篇 朝鲜文
检索条件"机构=Big Data and Software Engineering"
1764 条 记 录,以下是1151-1160 订阅
排序:
Heterogenous multi-source fusion for ship trajectory complement and prediction with sequence modeling  5
Heterogenous multi-source fusion for ship trajectory complem...
收藏 引用
5th IEEE International Conference on data Science in Cyberspace, DSC 2020
作者: Zheng, Changmeng Peng, Qi Xu, Xuemiao South China University of Technology Key Laboratory of Big Data and Intelligent Robot School of Software Engineering Guangzhou China South China University of Technology School of Computer Science Engineering Guangzhou China
Effectively monitoring ships and discovering abnormal ship trajectory in time is necessary for marine traffic supervision. The basic work of discovering the ship's abnormal trajectory is to predict the ship's ... 详细信息
来源: 评论
ROD: Reception-aware online distillation for sparse graphs
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wentao Jiang, Yuezihan Li, Yang Sheng, Zeang Shen, Yu Miao, Xupeng Wang, Liang Yang, Zhi Cui, Bin School of EECS Key Laboratory of High Confidence Software Technologies Peking University Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications Alibaba Group
Graph neural networks (GNNs) have been widely used in many graph-based tasks such as node classification, link prediction, and node clustering. However, GNNs gain their performance benefits mainly from performing the ... 详细信息
来源: 评论
Grain: Improving data efficiency of graph neural networks via diversified influence maximization
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wentao Yang, Zhi Wang, Yexin Shen, Yu Li, Yang Wang, Liang Cui, Bin School of EECS Key Laboratory of High Confidence Software Technologies Peking University Tencent Inc Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications
data selection methods, such as active learning and core-set selection, are useful tools for improving the data efficiency of deep learning models on large-scale datasets. However, recent deep learning models have mov... 详细信息
来源: 评论
Optimization analysis of online marketing strategy based on the regression prediction model  2
Optimization analysis of online marketing strategy based on ...
收藏 引用
2020 2nd International Conference on Advances in Civil engineering, Energy Resources and Environment engineering, ACCESE 2020
作者: Yang, Jingya Xiao, Xiwang Zhang, Xianfeng Wen, Bin Zhang, Yuehua Guan, Jinqiu Li, Lan College of Science and Mechanical Engineering Jiamusi University Jiamusi City Heilongjiang Province154007 China College of Big Data and Software Engineering Wuzhou University Wuzhou City Guangxi Province543000 China
In response to the three new product sales recommendations of the Amazon online market "Sunshine", based on the data set provided by the enterprise data center, the data in the NLP feature package is preproc... 详细信息
来源: 评论
FlagVNE: A Flexible and Generalizable Reinforcement Learning Framework for Network Resource Allocation
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Tianfu Fan, Qilin Wang, Chao Yang, Long Ding, Leilei Yuan, Nicholas Jing Xiong, Hui School of Computer Science and Technology University of Science and Technology of China China School of Big Data and Software Engineering Chongqing University China Guangzhou HKUST Fok Ying Tung Research Institute China School of Artificial Intelligence Peking University China Thrust of Artificial Intelligence The Hong Kong University of Science and Technology Guangzhou China Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong Hong Kong
Virtual network embedding (VNE) is an essential resource allocation task in network virtualization, aiming to map virtual network requests (VNRs) onto physical infrastructure. Reinforcement learning (RL) has recently ... 详细信息
来源: 评论
Motif Channel Opened in a White-Box: Stereo Matching via Motif Correlation Graph
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Ziyang Zhang, Yongjun Li, Wenting Wang, Bingshu Zhao, Yong Chen, C.L. Philip College of Computer Science the State Key Laboratory of Public Big Data Guizhou University Guiyang550025 China School of Information Engineering Guizhou University of Commerce Guiyang550021 China School of Software Northwestern Polytechnical University Xi’an710129 China Key Laboratory of Integrated Microsystems Shenzhen Graduate School Peking University Shenzhen518055 China School of Computer Science and Engineering South China University of Technology Guangzhou510641 China
Real-world applications of stereo matching, such as autonomous driving, place stringent demands on both safety and accuracy. However, learning-based stereo matching methods inherently suffer from the loss of geometric... 详细信息
来源: 评论
Connecting latent relationships over heterogeneous attributed network for recommendation
arXiv
收藏 引用
arXiv 2021年
作者: Duan, Ziheng Wang, Yueyang Ye, Weihao Feng, Zixuan Fan, Qilin Li, Xiuhua School of Big Data and Software Engineering Chongqing University Chongqing401331 China Department of Control Science and Technology Zhejiang University Hangzhou310027 China
Recently, deep neural network models for graph-structured data have been demonstrating to be influential in recommendation systems. Graph Neural Network (GNN), which can generate high-quality embeddings by capturing g... 详细信息
来源: 评论
Decoupled Prototype Learning for Reliable Test-Time Adaptation
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Guowei Ding, Changxing Tan, Wentao Tan, Mingkui the School of Electronic and Information Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou510000 China the Pazhou Lab Guangzhou510330 China the School of Future Technology South China University of Technology 381 Wushan Road Tianhe District Guangzhou510000 China the School of Software Engineering the Key Laboratory of Big Data and Intelligent Robot Ministry of Education South China University of Technology Guangzhou510006 China
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference. One popular approach involves fine-tuning model with cross-entropy loss according to estim... 详细信息
来源: 评论
Semi-Supervised Learning For Signal Recognition With Sparsity And Robust Promotion
Semi-Supervised Learning For Signal Recognition With Sparsit...
收藏 引用
IEEE Conference on Wireless Communications and Networking
作者: Yihong Dong Xiaohan Jiang Lei Cheng Qingjiang Shi School of Software Engineering Tongji University Shanghai China Shenzhen Research Institute of Big Data Shenzhen Guangdong P. R. China
Due to the emergence of deep learning, signal recognition has made great strides in performance improvement. The success of most deep learning methods relies on the accessibility of abundant labelled training data. Ho... 详细信息
来源: 评论
Code-Aware Fault Localization with Pre-Training and Interpretable Machine Learning
SSRN
收藏 引用
SSRN 2022年
作者: Zhang, Zhuo Li, Ya Yang, Sha Zhang, Zhanjun Lei, Yan School of Information Technology and Engineering Guangzhou College of Commerce Guangzhou China Ningbo Artificial Intelligence Institute Shanghai Jiaotong University Ningbo China College of Computer National University of Defense Technology Changsha China School of Big Data and Software Engineering Chongqing University Chongqing China
Following the rapid development of deep learning, many studies in the field of fault localization (FL) have utilized deep learning to analyze statements coverage information (i.e., executed or not executed) and test c... 详细信息
来源: 评论