咨询与建议

限定检索结果

文献类型

  • 17 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 15 篇 工学
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 4 篇 信息与通信工程
    • 3 篇 动力工程及工程热...
    • 3 篇 控制科学与工程
    • 3 篇 生物工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 电气工程
    • 1 篇 化学工程与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 13 篇 理学
    • 8 篇 数学
    • 5 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 3 篇 生物学
    • 1 篇 化学
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 1 篇 free energy
  • 1 篇 reinforcement le...
  • 1 篇 job analysis
  • 1 篇 government of in...
  • 1 篇 long short-term ...
  • 1 篇 defence
  • 1 篇 statistics
  • 1 篇 customer privacy
  • 1 篇 recommender syst...
  • 1 篇 big data analyti...
  • 1 篇 food security
  • 1 篇 hessian
  • 1 篇 corporate govern...
  • 1 篇 partial hessian ...
  • 1 篇 newton method
  • 1 篇 optimization
  • 1 篇 linear programmi...
  • 1 篇 marketing
  • 1 篇 logistic regress...
  • 1 篇 factorization

机构

  • 3 篇 department of br...
  • 3 篇 berliner zentrum...
  • 3 篇 max-planck-insti...
  • 3 篇 berlin big data ...
  • 3 篇 machine learning...
  • 3 篇 riken center for...
  • 2 篇 max planck insti...
  • 2 篇 berlin big data ...
  • 2 篇 machine learning...
  • 2 篇 college of big d...
  • 2 篇 department of br...
  • 2 篇 fraunhofer heinr...
  • 1 篇 sbilab departmen...
  • 1 篇 electrical engin...
  • 1 篇 data science: st...
  • 1 篇 massachusetts in...
  • 1 篇 1120 enterprise ...
  • 1 篇 audio and speech...
  • 1 篇 university of sc...
  • 1 篇 ihu strasbourg

作者

  • 5 篇 nakajima shinich...
  • 5 篇 müller klaus-rob...
  • 2 篇 dong yuxin
  • 2 篇 samek wojciech
  • 2 篇 li chen
  • 2 篇 gong tieliang
  • 2 篇 strodthoff nils
  • 2 篇 zhou chengmin
  • 2 篇 kessel pan
  • 2 篇 huang bingding
  • 2 篇 bauer alexander
  • 2 篇 görnitz nico
  • 2 篇 fränti pasi
  • 2 篇 yu shujian
  • 1 篇 acero jorge corr...
  • 1 篇 al khalil yasmin...
  • 1 篇 yoshino koichiro
  • 1 篇 commowick olivie...
  • 1 篇 kim seokhwan
  • 1 篇 zhou jie

语言

  • 17 篇 英文
  • 1 篇 其他
检索条件"机构=Big-data Machine Learning Group"
18 条 记 录,以下是1-10 订阅
排序:
Hybridizing Target- and SHAP-encoded Features for Algorithm Selection in Mixed-variable Black-box Optimization
arXiv
收藏 引用
arXiv 2024年
作者: Dietrich, Konstantin Prager, Raphael Patrick Doerr, Carola Trautmann, Heike Big Data Analytics in Transportation TU Dresden Germany ScaDS.AI Dresden Germany Data Science: Statistics and Optimization University of Münster Germany Sorbonne Université CNRS LIP6 Paris France Machine Learning and Optimisation Paderborn University Germany Data Management and Biometrics Group University of Twente Netherlands
Exploratory landscape analysis (ELA) is a well-established tool to characterize optimization problems via numerical features. ELA is used for problem comprehension, algorithm design, and applications such as automated... 详细信息
来源: 评论
Bayesian inference for data-efficient, explainable, and safe robotic motion planning: A review
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Chengmin Wang, Chao Hassan, Haseeb Shah, Himat Huang, Bingding Fränti, Pasi Machine Learning Group School of Computing University of Eastern Finland JoensuuFI-80100 Finland College of Big Data and Internet Shenzhen Technology University Shenzhen518118 China Machine Learning Group School of Computing University of Eastern Finland JoensuuFI-80100 Finland College of Big Data and Internet Shenzhen Technology University Shenzhen518118 China College of Blockchain industry Chengdu University of Information Technology Chengdu610225 China College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen518118 China
Bayesian inference has many advantages in robotic motion planning over four perspectives: The uncertainty quantification of the policy, safety (risk-aware) and optimum guarantees of robot’s motions, data-efficiency i... 详细信息
来源: 评论
Hybrid of representation learning and reinforcement learning for dynamic and complex robotic motion planning
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Chengmin Lu, Xin Dai, Jiapeng Huang, Bingding Liu, Xiaoxu Fränti, Pasi Machine Learning Group School of Computing University of Eastern Finland Joensuu Finland College of Big Data and Internet Shenzhen Technology University Shenzhen China University of Eastern Finland Shenzhen Technology University simultaneously Finland Shenzhen Technology University simultaneously China Sino-German College of Intelligent Manufacturing Shenzhen Technology University Shenzhen China
Motion planning is the soul of robot decision making. Classical planning algorithms like graph search and reaction-based algorithms face challenges in cases of dense and dynamic obstacles. Deep learning algorithms gen... 详细信息
来源: 评论
Asymptotically unbiased estimation of physical observables with neural samplers
收藏 引用
Physical Review E 2020年 第2期101卷 023304-023304页
作者: Kim A. Nicoli Shinichi Nakajima Nils Strodthoff Wojciech Samek Klaus-Robert Müller Pan Kessel Machine Learning Group Technische Universität Berlin 10587 Berlin Germany and Berlin Big Data Center 10587 Berlin Germany
We propose a general framework for the estimation of observables with generative neural samplers focusing on modern deep generative neural networks that provide an exact sampling probability. In this framework, we pre... 详细信息
来源: 评论
Computationally Efficient Approximations for Matrix-based Rényi's Entropy
arXiv
收藏 引用
arXiv 2021年
作者: Gong, Tieliang Dong, Yuxin Yu, Shujian Dong, Bo The School of Computer Science and Technology Xi'an Jiaotong University Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an710049 China The Machine Learning Group UiT - The Arctic University of Norway Department of Computer Science Vrije University Amsterdam Amsterdam Netherlands
The recently developed matrix-based Rényi's αorder entropy enables measurement of information in data simply using the eigenspectrum of symmetric positive semi-definite (PSD) matrices in reproducing kernel H... 详细信息
来源: 评论
Robust and Fast Measure of Information via Low-rank Representation
arXiv
收藏 引用
arXiv 2022年
作者: Dong, Yuxin Gong, Tieliang Yu, Shujian Chen, Hong Li, Chen School of Computer Science and Technology Xi’an Jiaotong University Xi’an710049 China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Ministry of Education Xi’an710049 China Machine Learning Group UiT - The Arctic University of Norway Norway College of Science Huazhong Agriculture University Wuhan430070 China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Wuhan430070 China
The matrix-based Rényi’s entropy allows us to directly quantify information measures from given data, without explicit estimation of the underlying probability distribution. This intriguing property makes it wid... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Comprehensive empirical evaluation of deep learning approaches for session-based recommendation in e-commerce
arXiv
收藏 引用
arXiv 2020年
作者: Maher, Mohamed Ngoy, Perseverance Munga Rebriks, Aleksandrs Ozcinar, Cagri Cuevas, Josue Sanagavarapu, Rajasekhar Anbarjafari, Gholamreza University of Tartu Tartu Estonia iCV Lab University of Tartu Tartu Estonia Faculty of Engineering Hasan Kalyoncu University Gaziantep Turkey Rakuten Inc. Big Data Department Machine Learning Group Tokyo Japan
Boosting sales of e-commerce services is guaranteed once users find more matching items to their interests in a short time. Consequently, recommendation systems have become a crucial part of any successful e-commerce ... 详细信息
来源: 评论
Automatic identification of types of alterations in historical manuscripts
arXiv
收藏 引用
arXiv 2020年
作者: Lassner, David Baillot, Anne Dogadov, Sergej Müller, Klaus-Robert Nakajima, Shinichi Machine Learning Group Technische Universität Berlin Berlin10587 Germany Le Mans Université Le Mans72085 France Berlin Big Data Center Berlin10587 Germany Department of Brain and Cognitive Engineering Korea University Anam-dong Seongbuk-gu Seoul136-713 Korea Republic of Max-Planck-Institut für Informatik Saarbrücken Germany Berliner Zentrum für Maschinelles Lernen Berlin10587 Germany RIKEN Center for AIP Tokyo103-0027 Japan
Alterations in historical manuscripts such as letters represent a promising field of research. On the one hand, they help understand the construction of text. On the other hand, topics that are being considered sensit... 详细信息
来源: 评论
Feature extraction for hyperspectral imagery: The evolution from shallow to deep
arXiv
收藏 引用
arXiv 2020年
作者: Rasti, Behnood Hong, Danfeng Hang, Renlong Ghamisi, Pedram Kang, Xudong Chanussot, Jocelyn Benediktsson, Jon Atli Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany Univ. Grenoble Alpes CNRS Grenoble INP GIPSAlab Grenoble38000 France Jiangsu Key Laboratory of Big Data Analysis Technology School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany College of Electrical and Information Engineering Hunan University Changsha410082 China Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province Changsha410082 China Univ. Grenoble Alpes Inria CNRS Grenoble INP LJK GrenobleF-38000 France Faculty of Electrical and Computer Engineering University of Iceland Reykjavik101 Iceland Faculty of Electrical and Computer Engineering University of Iceland Reykjavik107 Iceland
The final version of the paper can be found in IEEE Geoscience and Remote Sensing Magazine. Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dime... 详细信息
来源: 评论