In order to understand the underlying mechanisms of animals' agility, dexterity and efficiency in motor control, there has been an increasing interest in the study of gait patterns in biological and artificial leg...
详细信息
In order to understand the underlying mechanisms of animals' agility, dexterity and efficiency in motor control, there has been an increasing interest in the study of gait patterns in biological and artificial legged systems. This paper presents a novel approach to the study of gait patterns which makes use of intrinsic mechanical dynamics of robotic systems. Each of these robots consists of a U-shape elastic beam and exploits free vibration to generate different gait patterns. We developed a conceptual model for these robots, and through simulation and real-world experiments, we show three distinct mechanisms for generating four different gait patterns in these robots.
This paper presents an artificial homeostatic system (AHS) devoted to the autonomous navigation of mobile robots, with emphasis on neuro-endocrine interactions. The AHS is composed of two modules, each one associated ...
详细信息
This paper presents an artificial homeostatic system (AHS) devoted to the autonomous navigation of mobile robots, with emphasis on neuro-endocrine interactions. The AHS is composed of two modules, each one associated with a particular reactive task and both implemented using an extended version of the GasNet neural model, denoted spatially unconstrained GasNet model or simply non-spatial GasNet (NSGasNet). There is a coordination system, which is responsible for the specific role of each NSGasNet at a given operational condition. The switching among the NSGasNets is implemented as an artificial endocrine system (AES), which is based on a system of coupled nonlinear difference equations. The NSGasNets are synthesized by means of an evolutionary algorithm. The obtained neuro-endocrine controller is adopted in simulated and real benchmark applications, and the additional flexibility provided by the use of NSGasNet, together with the existence of an automatic coordination system, guides to convincing levels of performance.
暂无评论