咨询与建议

限定检索结果

文献类型

  • 340 篇 期刊文献
  • 249 篇 会议
  • 1 册 图书

馆藏范围

  • 590 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 296 篇 工学
    • 172 篇 计算机科学与技术...
    • 140 篇 软件工程
    • 102 篇 生物工程
    • 82 篇 生物医学工程(可授...
    • 53 篇 信息与通信工程
    • 44 篇 化学工程与技术
    • 30 篇 电气工程
    • 20 篇 光学工程
    • 19 篇 控制科学与工程
    • 11 篇 安全科学与工程
    • 10 篇 农业工程
    • 9 篇 机械工程
    • 9 篇 交通运输工程
    • 9 篇 环境科学与工程(可...
    • 8 篇 土木工程
    • 8 篇 食品科学与工程(可...
  • 281 篇 理学
    • 168 篇 生物学
    • 69 篇 数学
    • 52 篇 化学
    • 37 篇 物理学
    • 31 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 77 篇 管理学
    • 51 篇 图书情报与档案管...
    • 31 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 52 篇 医学
    • 38 篇 基础医学(可授医学...
    • 37 篇 临床医学
    • 24 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
  • 46 篇 农学
    • 22 篇 作物学
  • 7 篇 经济学
  • 6 篇 法学
  • 4 篇 教育学
  • 1 篇 文学

主题

  • 29 篇 bioinformatics
  • 24 篇 deep learning
  • 24 篇 proteins
  • 20 篇 machine learning
  • 14 篇 genomics
  • 12 篇 forecasting
  • 11 篇 predictive model...
  • 10 篇 rna
  • 9 篇 data mining
  • 9 篇 semantics
  • 9 篇 gene expression
  • 8 篇 transfer learnin...
  • 8 篇 diseases
  • 8 篇 data models
  • 7 篇 accuracy
  • 6 篇 computer science
  • 6 篇 support vector m...
  • 6 篇 genes
  • 6 篇 genome
  • 6 篇 dna

机构

  • 74 篇 bioinformatics a...
  • 49 篇 bioinformatics a...
  • 37 篇 bioinformatics a...
  • 32 篇 computer science...
  • 28 篇 computer science...
  • 25 篇 computer science...
  • 25 篇 computer science...
  • 19 篇 bioinformatics &...
  • 16 篇 computer science...
  • 15 篇 computer science...
  • 15 篇 bina nusantara u...
  • 14 篇 computer science...
  • 10 篇 bina nusantara u...
  • 10 篇 department of co...
  • 9 篇 computer science...
  • 9 篇 computer science...
  • 8 篇 computer science...
  • 7 篇 computer science...
  • 7 篇 school of comput...
  • 7 篇 department of ge...

作者

  • 117 篇 bens pardamean
  • 105 篇 pardamean bens
  • 28 篇 alam ahmad hiday...
  • 25 篇 tjeng wawan ceng...
  • 24 篇 elwirehardja gre...
  • 23 篇 hidayat alam ahm...
  • 20 篇 rahutomo reza
  • 20 篇 arif budiarto
  • 19 篇 teddy suparyanto
  • 18 篇 reza rahutomo
  • 18 篇 gregorius natana...
  • 17 篇 krishnaswamy smi...
  • 15 篇 cenggoro tjeng w...
  • 15 篇 mahmud isnan
  • 15 篇 isnan mahmud
  • 13 篇 suparyanto teddy
  • 13 篇 joko pebrianto t...
  • 12 篇 rudi nirwantono
  • 11 篇 b. pardamean
  • 11 篇 trinugroho joko ...

语言

  • 568 篇 英文
  • 20 篇 其他
  • 1 篇 中文
检索条件"机构=Bioinformatics Program and Department of Computer Science"
590 条 记 录,以下是381-390 订阅
排序:
Transfer Learning from Chest X-Ray Pre-trained Convolutional Neural Network for Learning Mammogram Data
收藏 引用
Procedia computer science 2018年 135卷 400-407页
作者: Bens Pardamean Tjeng Wawan Cenggoro Reza Rahutomo Arif Budiarto Ettikan Kandasamy Karuppiah Computer Science Department BINUS Graduate Program - Master of Computer Science Program Bina Nusantara University Jakarta Indonesia 11480 Bioinformatics and Data Science Research Center Bina Nusantara University Jakarta Indonesia 11480 Computer Science Department School of Computer Science Bina Nusantara University Jakarta Indonesia 11480 NVIDIA Corporation
Breast cancer is one of the deadliest cancer for female nowadays. Despite of the rapid advancement in medical image analysis with the rise of deep learning, development of breast cancer detection system is limited due... 详细信息
来源: 评论
Manifold learning-based methods for analyzing single-cell RNA-sequencing data
收藏 引用
Current Opinion in Systems Biology 2018年 7卷 36-46页
作者: Moon, Kevin R. Stanley, Jay S. Burkhardt, Daniel van Dijk, David Wolf, Guy Krishnaswamy, Smita Department of Genetics Yale University New Haven CT United States Applied Mathematics Program Yale University New Haven CT United States Computational Biology and Bioinformatics Program Yale University New Haven CT United States Department of Computer Science Yale University New Haven CT United States
Recent advances in single-cell RNA sequencing technologies enable deep insights into cellular development, gene regulation, and phenotypic diversity by measuring gene expression for thousands of cells in a single expe... 详细信息
来源: 评论
Genomic basis for RNA alterations in cancer (vol 578, pg 129, 2020)
收藏 引用
NATURE 2023年 第7948期614卷 E37-E37页
作者: Calabrese, Claudia Davidson, Natalie R. Demircioglu, Deniz Fonseca, Nuno A. He, Yao Lehmann, Kjong-Van Liu, Fenglin Shiraishi, Yuichi Soulette, Cameron M. Urban, Lara Greger, Liliana Li, Siliang Liu, Dongbing Perry, Marc D. Xiang, Qian Zhang, Fan Zhang, Junjun Bailey, Peter Erkek, Serap Hoadley, Katherine A. Hou, Yong Huska, Matthew R. Kilpinen, Helena Korbel, Jan O. Marin, Maximillian G. Markowski, Julia Nandi, Tannistha Pan-Hammarstrom, Qiang Pedamallu, Chandra Sekhar Siebert, Reiner Stark, Stefan G. Su, Hong Tan, Patrick Waszak, Sebastian M. Yung, Christina Zhu, Shida Awadalla, Philip Creighton, Chad J. Meyerson, Matthew Ouellette, B. F. Francis Wu, Kui Yang, Huanming Brazma, Alvis Brooks, Angela N. Goke, Jonathan Ratsch, Gunnar Schwarz, Roland F. Stegle, Oliver Zhang, Zemin European Molecular Biology Laboratory European Bioinformatics Institute Hinxton UK European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) Cambridge UK Genome Biology Unit European Molecular Biology Laboratory (EMBL) Heidelberg Germany CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources Universidade do Porto Vairão Portugal Berlin Institute for Medical Systems Biology Max Delbruck Center for Molecular Medicine Berlin Germany German Cancer Consortium (DKTK) partner site Berlin Germany German Cancer Research Center (DKFZ) Heidelberg Germany Berlin Institute for Medical Systems Biology Max Delbrück Center for Molecular Medicine Berlin Germany German Cancer Consortium (DKTK) Partner site Berlin Berlin Germany European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany Division of Computational Genomics and Systems Genetics German Cancer Research Center (DKFZ) Heidelberg Germany ETH Zurich Zurich Switzerland Memorial Sloan Kettering Cancer Center New York NY USA Weill Cornell Medical College New York NY USA SIB Swiss Institute of Bioinformatics Lausanne Switzerland University Hospital Zurich Zurich Switzerland Computational Biology Center Memorial Sloan Kettering Cancer Center New York NY USA Department of Biology ETH Zurich Zürich Switzerland Department of Computer Science ETH Zurich Zurich Switzerland Korea University Seoul South Korea Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center New York NY USA Department of Physiology and Biophysics Weill Cornell Medicine New York NY USA Institute for Computational Biomedicine Weill Cornell Medicine New York NY USA Controlled Department and Institution New York NY USA Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA National University of Singapore Singapore Singapore Genome Institute of Singapore Singapore Singapore Computational and Systems Biology Genome Institute of Singap
来源: 评论
The evolutionary history of 2,658 cancers (vol 578, pg 122, 2020)
收藏 引用
NATURE 2023年 第7948期614卷 E42-E42页
作者: Gerstung, Moritz Jolly, Clemency Leshchiner, Ignaty Dentro, Stefan C. Gonzalez, Santiago Rosebrock, Daniel Mitchell, Thomas J. Rubanova, Yulia Anur, Pavana Yu, Kaixian Tarabichi, Maxime Deshwar, Amit Wintersinger, Jeff Kleinheinz, Kortine Vazquez-Garcia, Ignacio Haase, Kerstin Jerman, Lara Sengupta, Subhajit Macintyre, Geoff Malikic, Salem Donmez, Nilgun Livitz, Dimitri G. Cmero, Marek Demeulemeester, Jonas Schumacher, Steven Fan, Yu Yao, Xiaotong Lee, Juhee Schlesner, Matthias Boutros, Paul C. Bowtell, David D. Zhu, Hongtu Getz, Gad Imielinski, Marcin Beroukhim, Rameen Sahinalp, S. Cenk Ji, Yuan Peifer, Martin Markowetz, Florian Mustonen, Ville Yuan, Ke Wang, Wenyi Morris, Quaid D. Spellman, Paul T. Wedge, David C. Van Loo, Peter European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) Cambridge UK European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany Wellcome Sanger Institute Cambridge UK Genome Biology Unit European Molecular Biology Laboratory (EMBL) Heidelberg Germany University of Ljubljana Ljubljana Slovenia The Francis Crick Institute London UK Big Data Institute University of Oxford Oxford UK Wellcome Sanger Institute Wellcome Genome Campus Hinxton UK Big Data Institute Li Ka Shing Centre University of Oxford Oxford UK University of Cambridge Cambridge UK Cambridge University Hospitals NHS Foundation Trust Cambridge UK Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences University of Cambridge Cambridge UK Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York NY USA Department of Statistics Columbia University New York NY USA Department of Haematology University of Cambridge Cambridge UK University of Leuven Leuven Belgium Broad Institute of MIT and Harvard Cambridge MA USA Center for Cancer Research Massachusetts General Hospital Charlestown MA USA Department of Pathology Massachusetts General Hospital Boston MA USA Harvard Medical School Boston MA USA Center for Cancer Research Massachusetts General Hospital Boston MA USA Dana-Farber Cancer Institute Boston MA USA Department of Medical Oncology Dana-Farber Cancer Institute Boston MA USA Department of Cancer Biology Dana-Farber Cancer Institute Boston MA USA Oxford NIHR Biomedical Research Centre Oxford UK Oxford NIHR Biomedical Research Centre University of Oxford Oxford UK University of Toronto Toronto Ontario Canada Vector Institute Toronto Ontario Canada Vector Institute Toronto ON Canada Department of Computer Science University of Toronto Toronto ON Canada Ontario Institute for Cancer Research Toronto Ontario Canada University of California Los Angeles
来源: 评论
Compressed diffusion
arXiv
收藏 引用
arXiv 2019年
作者: Gigante, Scott Stanley, Jay S. Vu, Ngan van Dijk, David Moon, Kevin R. Wolf, Guy Krishnaswamy, Smita Computational Biology and Bioinformatics Program Department of Computer Science Department of Genetics Yale University New HavenCT United States Department of Mathematics and Statistics Utah State University LoganUT United States Department of Mathematics and Statistics Université de Montréal MontéalQC Canada
Diffusion maps are a commonly used kernel-based method for manifold learning, which can reveal intrinsic structures in data and embed them in low dimensions. However, as with most kernel methods, its implementation re... 详细信息
来源: 评论
The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2
收藏 引用
四川生理科学杂志 2022年 第7期44卷 1299-1299页
作者: Jonathan E Pekar Bioinformatics and Systems Biology Graduate Program University of California San Diego La Jolla CA 92093 USA Department of Biomedical Informatics University of California San Diego La Jolla CA 92093 USA Department of Human Genetics David Geffen School of Medicine University of California Los Angeles Los Angeles CA 90095 USA Department of Immunology and Microbiology The Scripps Research Institute La Jolla CA 92037 USA Department of Computer Science and Engineering University of California San Diego La Jolla CA 92093 USA Department of Mathematics University of California San Diego La Jolla CA 92093 USA Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721 USA W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health Baltimore MD 21205 USA New York City Public Health Laboratory New York City Department of Health and Mental Hygiene New York NY 11101 USA Department of Microbiology Institute for Viral Diseases Biosafety Center College of Medicine Korea University Seoul South Korea BK21 Graduate Program Department of Biomedical Sciences Korea University College of Medicine Seoul 02841 Republic of Korea National Public Health Laboratory National Centre for Infectious Diseases Singapore Malaysia Genome and Vaccine Institute Jalan Bangi 43000 Kajang Selangor Malaysia Department of Medicine University of California San Diego La Jolla CA 92093 USA Department of Microbiology and Immunology School of Medicine Tulane University New Orleans LA 70112 USA Zalgen Labs Frederick MD 21703 USA Global Virus Network (GVN) Baltimore MD 21201 USA Sydney Institute for Infectious Diseases School of Life and Environmental Sciences and School of Medical Sciences The University of Sydney Sydney NSW 2006 Australia Institute of Evolutionary Biology University of Edinburgh King’s Buildings Edinburgh EH9 3FL UK Department of Biomathematics David Geffen School of Medicine Un
Understanding the circumstances that lead to pandemics is important for their prevention. Here, we analyze the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus... 详细信息
来源: 评论
Multiscale PHATE Exploration of SARS-CoV-2 Data Reveals Multimodal Signatures of Disease
Research Square
收藏 引用
Research Square 2021年
作者: Kuchroo, Manik Huang, Jessie Wong, Patrick Grenier, Jean-Christophe Shung, Dennis Tong, Alexander Lucas, Carolina Klein, Jon Burkhardt, Daniel B. Gigante, Scott Godavarthi, Abhinav Rieck, Bastian Israelow, Benjamin Simonov, Michael Mao, Tianyang Oh, Ji Eun Silva, Julio Takahashi, Takehiro Odio, Camila D. Casanovas-Massana, Arnau Fournier, John Farhadian, Shelli Dela Cruz, Charles S. Ko, Albert I. Hirn, Matthew J. Wilson, F. Perry Hussin, Julie Wolf, Guy Iwasaki, Akiko Krishnaswamy, Smita Department of Neuroscience Yale University New HavenCT United States Department of Computer Science Yale University New HavenCT United States Department of Immunobiology Yale University New HavenCT United States Montreal Heart Institute MontréalQC Canada Department of Medicine Yale University New HavenCT United States Department of Genetics Yale University New HavenCT United States Computational Biology Bioinformatics Program Yale University New HavenCT United States Department of Applied Mathematics Yale University New HavenCT United States Department of Biosystems Science and Engineering ETH Zurich Switzerland Department of Epidemiology of Microbial Diseases Yale School of Public Health New HavenCT United States Department of Medicine Section of Infectious Diseases Yale University School of Medicine New HavenCT United States Department of Medicine Section of Pulmonary and Critical Care Medicine Yale University School of Medicine New HavenCT United States Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI United States Department of Mathematics Michigan State University East LansingMI United States Clinical and Translational Research Accelerator Department of Medicine Yale University New HavenCT United States Faculty of Medicine Université de Montréal Québec Canada Mila – Quebec AI institute MontréalQC Canada Department of Mathematics and Statistics Université de Montréal MontréalQC Canada Howard Hughes Medical Institute Chevy ChaseMD United States
The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from... 详细信息
来源: 评论
scTenifoldXct: A semi-supervised method for predicting cell-cell interactions and mapping cellular communication graphs
收藏 引用
Cell systems 2023年 第4期14卷 302-311.e4页
作者: Yongjian Yang Guanxun Li Yan Zhong Qian Xu Yu-Te Lin Cristhian Roman-Vicharra Robert S Chapkin James J Cai Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843 USA. Department of Statistics Texas A&M University College Station TX 77843 USA. Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE School of Statistics East China Normal University 3663 North Zhongshan Road Shanghai 200062 China. Department of Veterinary Integrative Biosciences Texas A&M University College Station TX 77843 USA. Graduate Institute of Biomedical Electronics and Bioinformatics National Taiwan University Taipei Taiwan. Department of Nutrition and the Program in Integrative Nutrition & Complex Diseases Texas A&M University College Station TX 77843 USA. Electronic address: r-chapkin@tamu.edu. Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843 USA Department of Veterinary Integrative Biosciences Texas A&M University College Station TX 77843 USA Interdisciplinary Program of Genetics Texas A&M University College Station TX 77843 USA. Electronic address: jcai@tamu.edu.
We present scTenifoldXct, a semi-supervised computational tool for detecting ligand-receptor (LR)-mediated cell-cell interactions and mapping cellular communication graphs. Our method is based on manifold alignment, u... 详细信息
来源: 评论
Bayesian multinomial logistic normal models through marginally latent matrix-T processes
arXiv
收藏 引用
arXiv 2019年
作者: Silverman, Justin D. Roche, Kimberly Holmes, Zachary C. David, Lawrence A. Mukherjee, Sayan Program in Computational Biology and Bioinformatics Duke University DurhamNC27708 United States Medical Scientist Training Program Duke University DurhamNC27708 United States Departments of Statistical Science Mathematics Computer Science Biostatistics & Bioinformatics Duke University DurhamNC27708 United States Center for Genomic and Computational Biology Duke University DurhamNC27708 United States Department of Molecular Genetics and Microbiology Duke University DurhamNC27708 United States
Bayesian multinomial logistic-normal (MLN) models are popular for the analysis of sequence count data (e.g., microbiome or gene expression data) due to their ability to model multivariate count data with complex covar... 详细信息
来源: 评论
Visualizing structure and transitions in high-dimensional biological data (vol 54, pg 781, 2019)
收藏 引用
NATURE BIOTECHNOLOGY 2020年 第1期38卷 108-108页
作者: Moon, Kevin R. van Dijk, David Wang, Zheng Gigante, Scott Burkhardt, Daniel B. Chen, William S. Yim, Kristina van den Elzen, Antonia Hirn, Matthew J. Coifman, Ronald R. Ivanova, Natalia B. Wolf, Guy Krishnaswamy, Smita Department of Mathematics and Statistics Utah State University Logan USA Cardiovascular Research Center section Cardiology Department of Internal Medicine Yale University New Haven USA Department of Computer Science Yale University New Haven USA School of Basic Medicine Qingdao University Qingdao China Yale Stem Cell Center Department of Genetics Yale University New Haven USA Computational Biology and Bioinformatics Program Yale University New Haven USA Department of Genetics Yale University New Haven USA Department of Computational Mathematics Science and Engineering Michigan State University East Lansing USA Department of Mathematics Michigan State University East Lansing USA Applied Mathematics Program Yale University New Haven USA Department of Genetics Center for Molecular Medicine University of Georgia Athens USA Department of Mathematics and Statistics Université de Montréal Montréal Canada Mila—Quebec Artificial Intelligence Institute Montréal Canada
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论