咨询与建议

限定检索结果

文献类型

  • 150 篇 期刊文献
  • 10 篇 会议

馆藏范围

  • 160 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 医学
    • 53 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 9 篇 公共卫生与预防医...
    • 7 篇 药学(可授医学、理...
    • 2 篇 中西医结合
  • 63 篇 理学
    • 26 篇 生物学
    • 10 篇 数学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 2 篇 天文学
    • 1 篇 生态学
  • 50 篇 工学
    • 13 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 生物工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 光学工程
    • 1 篇 冶金工程
    • 1 篇 电气工程
  • 17 篇 农学
    • 6 篇 作物学
    • 2 篇 植物保护
  • 7 篇 管理学
    • 3 篇 公共管理
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 3 篇 machine learning
  • 2 篇 covid-19
  • 2 篇 eqtl
  • 2 篇 infectious disea...
  • 2 篇 genetics
  • 2 篇 data models
  • 2 篇 adjuvant chemoth...
  • 1 篇 complex networks
  • 1 篇 linear discrimin...
  • 1 篇 wilk’s lambda
  • 1 篇 biological marke...
  • 1 篇 eigenvalues and ...
  • 1 篇 mammography
  • 1 篇 sorf‐encoded pol...
  • 1 篇 community that c...
  • 1 篇 nobody
  • 1 篇 transcript profi...
  • 1 篇 presses
  • 1 篇 single-cell rna ...
  • 1 篇 feature selectio...

机构

  • 10 篇 department of in...
  • 7 篇 department of me...
  • 7 篇 wellcome centre ...
  • 7 篇 department of bi...
  • 7 篇 department of me...
  • 6 篇 institute for ca...
  • 6 篇 royal stoke univ...
  • 6 篇 department of tw...
  • 6 篇 department of ep...
  • 6 篇 cambridge univer...
  • 6 篇 human genetics c...
  • 6 篇 center for genom...
  • 5 篇 atherogenomics l...
  • 5 篇 leeds institute ...
  • 5 篇 national institu...
  • 5 篇 center for psych...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...

作者

  • 5 篇 macarthur daniel...
  • 5 篇 chakraborty bibh...
  • 5 篇 daly mark j.
  • 5 篇 alfoldi jessica
  • 5 篇 eikema dirk-jan
  • 4 篇 bong-jo kim
  • 4 篇 andrew t hatters...
  • 4 篇 cho kelly
  • 4 篇 eleftheria zeggi...
  • 4 篇 wei zheng
  • 4 篇 mark i mccarthy
  • 4 篇 kari stefansson
  • 4 篇 k. van baelen
  • 4 篇 e. biganzoli
  • 4 篇 g. zels
  • 4 篇 c. desmedt
  • 4 篇 aljurf mahmoud
  • 4 篇 dufour carlo
  • 4 篇 h. wildiers
  • 4 篇 g. floris

语言

  • 150 篇 英文
  • 7 篇 其他
  • 2 篇 中文
  • 1 篇 西班牙文
检索条件"机构=Bioinformatics and Statistics Unit"
160 条 记 录,以下是11-20 订阅
排序:
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Effects of a two-day intensive OAT intake on the gut microbiome in participants with metabolic syndrome
收藏 引用
Clinical Nutrition ESPEN 2023年 54卷 717-718页
作者: Klümpen, L. Mantri, A. Seel, W. Stoffel-Wagner, B. Coenen, M. Nöthen, M. Krawitz, P. Stehle, P. Simon, M.-C. Nutrition and Microbiota Institute of Nutrition and Food Science University of Bonn Institute for Genomics Statistics and Bioinformatics University Hospital Bonn Central Laborator Clinical Study Core Unit Study Center Bonn Institute of Clinical Chemistry and Clinical Pharmacology University Hospital Bonn Department of Genomics Life & Brain Center University of Bonn Institute of Human Genetics University of Bonn Nutritional Physiology Institute of Nutrition and Food Science University of Bonn Bonn Germany
来源: 评论
Effects Of Dietary Intervention On Plasma Lipid Profile Is Linked To Changes In The Microbiome Composition
收藏 引用
Clinical Nutrition ESPEN 2023年 54卷 499-499页
作者: Schieren, A. Huber, H. Mantri, A. Seel, W. Stoffel-Wagner, B. Coenen, M. Nöthen, M. Schmid, M. Weinhold, L. Krawitz, P. Stehle, P. Simon, M.-C. Nutrition and Microbiota Nutritional Physiology University of Bonn Institute for Genomic Statistics and Bioinformatics Central Laboratory Clinical Study Core Unit Institute of Human Genetics Institute of Medical Biometry Informatics and Epidemiology University Hospital Bonn Bonn Germany
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Learning and teaching biological data science in the Bioconductor community
arXiv
收藏 引用
arXiv 2024年
作者: Drnevich, Jenny Tan, Frederick J. Almeida-Silva, Fabricio Castelo, Robert Culhane, Aedin C. Davis, Sean Doyle, Maria A. Geistlinger, Ludwig Ghazi, Andrew R. Holmes, Susan Lahti, Leo Mahmoud, Alexandru Nishida, Kozo Ramos, Marcel Rue-Albrecht, Kevin Shih, David J.H. Gatto, Laurent Soneson, Charlotte Roy J. Carver Biotechnology Center University of Illinois Urbana-Champaign IL United States Johns Hopkins University Department of Biology BaltimoreMD United States Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium VIB Center for Plant Systems Biology Ghent Belgium Department of Medicine and Life Sciences Universitat Pompeu Fabra Barcelona Spain Limerick Digital Cancer Research Centre School of Medicine University of Limerick Ireland University of Colorado Anschutz School of Medicine DenverCO United States Core for Computational Biomedicine Department of Biomedical Informatics Harvard Medical School BostonMA United States Statistics Department Stanford University StanfordCA United States Department of Computing University of Turku Finland Channing Division of Network Medicine Harvard Medical School BostonMA United States RIKEN Center for Biosystems Dynamics Research 6-7-1 Minatojima Minamimachi Chuoku Hyogo Kobe Japan Department of Epidemiology and Biostatistics City University of New York School of Public Health New YorkNY United States MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine University of Oxford Oxford United Kingdom School of Biomedical Sciences Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong Computational Biology and Bioinformatics Unit de Duve Institute UCLouvain Brussels Belgium Friedrich Miescher Institute for Biomedical Research Basel Switzerland SIB Swiss Institute of Bioinformatics Basel Switzerland
Modern biological research is increasingly data-intensive, leading to a growing demand for effective training in biological data science. In this article, we provide an overview of key resources and best practices ava...
来源: 评论
Incorporating Participants’ Welfare into Sequential Multiple Assignment Randomized Trials
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Xinru Deliu, Nina Narita, Yusuke Chakraborty, Bibhas Centre for Quantitative Medicine Duke-NUS Medical School Singapore MRC - Biostatistics Unit University of Cambridge Cambridge United Kingdom Department of Methods and Models for Economics Territory and Finance Sapienza University of Rome Rome Italy Department of Economics and Cowles Foundation Yale University New HavenCT United States Program in Health Services and Systems Research Duke-NUS Medical School Singapore Department of Statistics and Data Science National University of Singapore Singapore Department of Biostatistics and Bioinformatics Duke University DurhamNC United States
Dynamic treatment regimes (DTRs) are sequences of decision rules that recommend treatments based on patients’ time-varying clinical conditions. The sequential multiple assignment randomized trial (SMART) is an experi... 详细信息
来源: 评论
Making SMART decisions in prophylaxis and treatment studies
arXiv
收藏 引用
arXiv 2022年
作者: Mahar, Robert K. Lee, Katherine J. Chakraborty, Bibhas Salim, Agus Simpson, Julie A. Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne ParkvilleVIC Australia Clinical Epidemiology and Biostatistics Unit Murdoch Children’s Research Institute ParkvilleVIC Australia Department of Paediatrics Melbourne Medical School University of Melbourne ParkvilleVIC Australia Centre for Quantitative Medicine Duke-NUS Medical School Singapore Singapore Department of Statistics Faculty of Science National University of Singapore Singapore Singapore Department of Biostatistics and Bioinformatics Duke University DurhamNC United States School of Mathematics and Statistics Faculty of Science University of Melbourne ParkvilleVIC Australia Baker Department of Cardiometabolic Health Melbourne Medical School Faculty of Medicine Dentistry and Health Sciences University of Melbourne ParkvilleVIC Australia
The optimal prophylaxis, and treatment if the prophylaxis fails, for a disease may be best evaluated using a sequential multiple assignment randomised trial (SMART). A SMART is a multi-stage study that randomises a pa... 详细信息
来源: 评论
BIPSPI+: Mining Type-Specific Datasets of Protein Complexes to Improve Protein Binding Site Prediction
收藏 引用
Journal of Molecular Biology 2022年 第11期434卷 167556-167556页
作者: Sanchez-Garcia, R. Macias, J.R. Sorzano, C.O.S. Carazo, J.M. Segura, J. Biocomputing Unit National Center for Biotechnology (CSIC) Darwin 3 Campus Univ. Autónoma de Madrid Cantoblanco Madrid 28049 Spain Oxford Protein Informatics Group Department of Statistics University of Oxford 29 St Giles' Oxford OX1 3LB UK United Kingdom Research Collaboratory for Structural Bioinformatics Protein Data Bank San Diego Supercomputer Center University of California San Diego La Jolla 92093 CA United States
Computational approaches for predicting protein-protein interfaces are extremely useful for understanding and modelling the quaternary structure of protein assemblies. In particular, partner-specific binding site pred... 详细信息
来源: 评论
Understanding Social Inequalities in Childhood Asthma: Quantifying the Mediating Role of Modifiable Early-Life Risk Factors in Seven European Birth Cohorts
收藏 引用
Journal of Allergy and Clinical Immunology: In Practice 2025年 第6期13卷 1385-1396页
作者: Pinot de Moira, Angela Aurup, Anne V. Avraam, Demetris Zugna, Daniela Jensen, Aksel Karl Georg Welten, Marieke Cadman, Timothy de Lauzon-Guillain, Blandine Duijts, Liesbeth Elhakeem, Ahmed Esplugues, Ana Garcia-Aymerich, Judith García-Baquero, Gonzalo González Safont, Llúcia Harris, Jennifer R. Iñiguez, Carmen Jaddoe, Vincent W.V. McEachan, Rosemary R.C. Nader, Johanna L.T. Santa Marina, Loreto Swertz, Morris A. Tafflet, Muriel Vrijheid, Martine Wright, John Yang, Tiffany C. Taylor-Robinson, David Richiardi, Lorenzo Nybo Andersen, Anne-Marie School of Public Health Imperial College London London United Kingdom Department of Public Health University of Copenhagen Copenhagen Denmark Department of Nutrition Exercise and Sports University of Copenhagen Copenhagen Denmark Department of Public Health Policy and Systems University of Liverpool Liverpool United Kingdom Cancer Epidemiology Unit Department of Medical Sciences University of Turin Turin Italy Department of Pediatrics Erasmus MC University Medical Center Rotterdam Rotterdam Netherlands Generation R Study Group Erasmus MC University Medical Center Rotterdam Rotterdam Netherlands Genomics Coordination Center University Medical Center Groningen University of Groningen Groningen Netherlands Department of Genetics University Medical Center Groningen University of Groningen Groningen Netherlands Université Paris Cité and Université Sorbonne Paris Nord INSERM INRAE Centre for Research in Epidemiology and Statistics Paris France Population Health Science Bristol Medical School Bristol United Kingdom MRC Integrative Epidemiology Unit at the University of Bristol Bristol United Kingdom Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP) Madrid Spain Department of Nursing University of Valencia Valencia Spain Epidemiology and Environmental Health Joint Research Unit the Foundation for the Promotion of Health and Biomedical Research of Valencia Region Universitat Jaume I-Universitat de València Valencia Spain Barcelona Institute for Global Health (ISGlobal) Barcelona Spain Universitat Pompeu Fabra (UPF) Barcelona Spain CEADIR Faculty of Biology University of Salamanca Campus Miguel de Unamuno Avda Licenciado Méndez Nieto s/n Salamanca Spain Biodonostia Environmental Epidemiology and Child Development Group San Sebastian Spain Centre for Fertility and Health Norwegian Institute of Public Health Oslo Norway Department of Statistics and Operational Research Universitat de València València Spain Bradford Institute f
Background: Children growing up in disadvantaged socioeconomic circumstances (SECs) have an increased risk of asthma. Objective: To increase our understanding of the pathways to inequalities in asthma and potential ta... 详细信息
来源: 评论