咨询与建议

限定检索结果

文献类型

  • 109 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 121 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 65 篇 理学
    • 29 篇 生物学
    • 8 篇 数学
    • 6 篇 化学
    • 5 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 大气科学
    • 2 篇 系统科学
    • 1 篇 天文学
  • 57 篇 工学
    • 23 篇 计算机科学与技术...
    • 18 篇 软件工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 生物工程
    • 5 篇 光学工程
    • 5 篇 化学工程与技术
    • 4 篇 安全科学与工程
    • 3 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 环境科学与工程(可...
  • 32 篇 医学
    • 21 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 8 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 15 篇 农学
    • 4 篇 作物学
  • 13 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 4 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 6 篇 教育学
    • 4 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 3 篇 measurement inva...
  • 3 篇 genome-wide asso...
  • 3 篇 bioinformatics
  • 3 篇 diseases
  • 2 篇 breast cancer
  • 2 篇 adversarial mach...
  • 2 篇 benchmarking
  • 2 篇 biotic
  • 2 篇 machine learning
  • 2 篇 cross-cultural
  • 2 篇 gene expression
  • 2 篇 addictive behavi...
  • 2 篇 data
  • 2 篇 genomics
  • 1 篇 uncertainty quan...
  • 1 篇 causality
  • 1 篇 global
  • 1 篇 object detection
  • 1 篇 learning systems
  • 1 篇 international se...

机构

  • 9 篇 department of in...
  • 6 篇 royal stoke univ...
  • 6 篇 cambridge univer...
  • 6 篇 university of gl...
  • 6 篇 vector institute...
  • 5 篇 leeds institute ...
  • 5 篇 national institu...
  • 5 篇 center for psych...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 institute for ca...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 division of card...
  • 5 篇 department of ve...
  • 5 篇 biomedical engin...

作者

  • 6 篇 mark i mccarthy
  • 5 篇 vilmantas giedra...
  • 5 篇 timothy m frayli...
  • 5 篇 andrew t hatters...
  • 5 篇 veronique vitart
  • 5 篇 caroline hayward
  • 5 篇 stella trompet
  • 5 篇 naveed sattar
  • 5 篇 kari stefansson
  • 5 篇 zitnik marinka
  • 4 篇 hakon hakonarson
  • 4 篇 danish saleheen
  • 4 篇 anu loukola
  • 4 篇 igor rudan
  • 4 篇 eleftheria zeggi...
  • 4 篇 terho lehtimäki
  • 4 篇 leslie a lange
  • 4 篇 tamara b harris
  • 4 篇 chu dinh-toi
  • 4 篇 macarthur daniel...

语言

  • 112 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Biological Data Science and Informatics"
121 条 记 录,以下是21-30 订阅
排序:
Deep-Motion-Net: GNN-based volumetric organ shape reconstruction from single-view 2D projections
arXiv
收藏 引用
arXiv 2024年
作者: Wijesinghe, Isuru Nix, Michael Zakeri, Arezoo Hokmabadi, Alireza Al-Qaisieh, Bashar Gooya, Ali Taylor, Zeike A. Centre for Computational Imaging and Simulation Technologies in Biomedicine School of Mechanical Engineering University of Leeds Leeds United Kingdom Institute of Medical and Biological Engineering School of Mechanical Engineering University of Leeds Leeds United Kingdom Department of Medical Physics and Engineering St James’s University Hospital Leeds Teaching Hospitals NHS Trust Leeds United Kingdom Division of Informatics Imaging and Data Sciences Faculty of Biology Medicine and Health University of Manchester Manchester United Kingdom School of Medicine and Population Health University of Sheffield Sheffield United Kingdom School of Computing Science University of Glasgow Glasgow United Kingdom
We propose Deep-Motion-Net: an end-to-end graph neural network (GNN) architecture that enables 3D (volumetric) organ shape reconstruction from a single in-treatment kV planar X-ray image acquired at any arbitrary proj... 详细信息
来源: 评论
Complex wound analysis using AI
收藏 引用
Computers in Biology and Medicine 2025年 190卷 109945-109945页
作者: Robinson, Connor J. Dickie, Bruce Lindner, Claudia Herrera, Jeremy Dingle, Lewis Reid, Adam J. Wong, Jason K.F. Hiebert, Paul Cootes, Timothy F. Kurinna, Svitlana Division of Cell Matrix Biology & Regenerative Medicine School of Biological Sciences FBMH The University of Manchester M13 9PT United Kingdom Division of Informatics Imaging & Data Sciences School of Health Sciences FBMH The University of Manchester M13 9PT United Kingdom Department of Medicine University of Colorado Anschutz Medical Campus AuroraCO80045 United States Department of Plastic Surgery & Burns Wythenshawe Hospital Manchester University NHS Foundation Trust Manchester Academic Health Science Centre ManchesterM23 9LT United Kingdom Biomedical Institute for Multimorbidity Centre for Biomedicine Hull York Medical School The University of Hull HU6 7RX United Kingdom
Impaired wound healing is a significant clinical challenge. Standard wound analysis approaches are macroscopic, with limited histological assessments that rely on visual inspection of haematoxylin and eosin (H&E)-... 详细信息
来源: 评论
Multimodal AI predicts clinical outcomes of drug combinations from preclinical data
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Yepeng Su, Xiaorui Ullanat, Varun Liang, Ivy Clegg, Lindsay Olabode, Damilola Ho, Nicholas John, Bino Gibbs, Megan Zitnik, Marinka Department of Biomedical Informatics Harvard Medical School BostonMA United States Program in Biological and Biomedical Sciences Harvard Medical School BostonMA United States Harvard College CambridgeMA United States Clinical Pharmacology and Quantitative Pharmacology Clinical Pharmacology & Safety Sciences R&D AstraZeneca GaithersburgMD United States Clinical Pharmacology and Quantitative Pharmacology Clinical Pharmacology & Safety Sciences R&D AstraZeneca WalthamMA United States Program in Computational Biology Carnegie Mellon University PittsburghPA United States Imaging and Data Analytics Clinical Pharmacology & Safety Sciences R&D AstraZeneca WalthamMA United States Kempner Institute for the Study of Natural and Artificial Intelligence Harvard University AllstonMA United States Broad Institute of MIT and Harvard CambridgeMA United States Harvard Data Science Initiative CambridgeMA United States
Predicting clinical outcomes from preclinical data is essential for identifying safe and effective drug combinations, reducing late-stage clinical failures, and accelerating the development of precision therapies. Cur... 详细信息
来源: 评论
A multiomics discriminatory analysis approach to identify drought-related signatures in maize nodal roots
A multiomics discriminatory analysis approach to identify dr...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Sidharth Sen Tyler McCubbin Shannon K. King Laura A. Greeley Shuai Zeng Cheyenne Baker Rachel Mertz Nicole D. Niehues Jonathon T. Stemmle Felix B. Fristchi David Braun Scott C. Peck Melvin J. Oliver Robert E. Sharp Trupti Joshi Institute for Data Science and Informatics & Informatics & Interdisciplinary Plant Group University of Missouri Columbia MO USA Division of Plant Sciences & Interdisciplinary Plant Group University of Missouri Columbia MO USA University of Missouri Columbia MO USA Division of Biological Sciences & Interdisciplinary Plant Group University of Missouri Columbia MO USA School of Journalism University of Missouri Columbia MO USA Divisions of Plant Science & Biological Sciences Interdisciplinary Plant Group University of Missouri Columbia MO USA Institute for Data Science & Informatics Columbia MO USA
Maize is one of the major food crops grown in the continental US, and as such, major interest is directed towards understanding its adaptability to drought stress. Certain cultivars of maize have shown increased resis... 详细信息
来源: 评论
Predicting risk of cardiovascular disease using retinal optical coherence tomography imaging
arXiv
收藏 引用
arXiv 2024年
作者: Maldonado-Garcia, Cynthia Bonazzola, Rodrigo Ferrante, Enzo Julian, Thomas H. Sergouniotis, Panagiotis I. Ravikumar, Nishant Frangi, Alejandro F. Centre for Computational Imaging and Simulation Technologies in Biomedicine School of Computing University of Leeds Leeds United Kingdom CONICET-UNL Santa Fe Argentina Division of Evolution Infection and Genomics School of Biological Sciences Faculty of Biology Medicine and Health University of Manchester Manchester United Kingdom Manchester Royal Eye Hospital Manchester University NHS Foundation Trust Manchester United Kingdom Manchester Centre for Genomic Medicine Saint Mary’s Hospital Manchester University NHS Foundation Trust Manchester United Kingdom Wellcome Genome Campus Cambridge United Kingdom Division of Informatics Imaging and Data Sciences School of Health Sciences Faculty of Biology Medicine and Health University of Manchester Manchester United Kingdom School of Computer Science Faculty of Science and Engineering University of Manchester Kilburn Building Manchester United Kingdom Christabel Pankhurst Institute University of Manchester Manchester United Kingdom NIHR Manchester Biomedical Research Centre Manchester Academic Health Science Centre Manchester United Kingdom
Cardiovascular diseases (CVD) are the leading cause of death globally. Non-invasive, cost-effective imaging techniques play a crucial role in early detection and prevention of CVD. Optical coherence tomography (OCT) h... 详细信息
来源: 评论
Population-based germline testing of BRCA1, BRCA2, and PALB2 in breast cancer patients in the United Kingdom: Evidence to support extended testing, and definition of groups who may not require testing
Genetics in Medicine Open
收藏 引用
Genetics in Medicine Open 2024年 2卷 100849-100849页
作者: Evans, D. Gareth Woodward, Emma R. Burghel, George J. Allen, Sophie Torr, Beth Hamill, Monica Kavanaugh, Grace Hubank, Mike Bremner, Stephen Jones, Christopher I. Schlecht, Helene Astley, Susan Bowers, Sarah Gibbons, Sarah Ruane, Helen Fosbury, Caroline Howell, Sacha J. Forde, Claire Lalloo, Fiona Newman, William G. Smith, Miriam J. Howell, Anthony Turnbull, Clare Gandhi, Ashu Manchester Centre for Genomic Medicine Manchester University Hospitals NHS Foundation Trust Manchester United Kingdom Division of Evolution and Genomic Sciences School of Biological Sciences Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre Manchester United Kingdom Prevent Breast Cancer Centre Wythenshawe Hospital Manchester Universities Foundation Trust Wythenshawe Manchester United Kingdom Manchester Breast Centre The Christie NHS Foundation Trust Wilmslow Road Manchester United Kingdom The Institute of Cancer Research 15 Cotswold Road Surrey Sutton United Kingdom Brighton and Sussex Clinical Trials Unit Brighton and Sussex Medical School Brighton United Kingdom Division of Informatics Imaging and Data Sciences Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre Manchester United Kingdom Division of Cancer Sciences Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre Manchester United Kingdom
Purpose: To assess the contribution of germline pathogenic variants (PVs) in population-based series of breast cancers and the best strategy to improve detection rates. Methods: Three cohort studies were utilized, inc... 详细信息
来源: 评论
Mlf-core: A framework for deterministic machine learning
arXiv
收藏 引用
arXiv 2021年
作者: Heumos, Lukas Ehmele, Philipp Kuhn Cuellar, Luis Menden, Kevin Miller, Edmund Lemke, Steffen Gabernet, Gisela Nahnsen, Sven Tübingen University of Tübingen Tübingen Germany Institute of Computational Biology Helmholtz Zentrum München Munich Germany Munich Germany School of Life Sciences Weihenstephan Technical University of Munich Munich Germany Department of Informatics University of Hamburg Hamburg Germany Department of Biological Sciences Center for Systems Biology The University of Texas at Dallas RichardsonTX United States Biomedical Data Science Department for Computer Science University of Tübingen Tübingen Germany
Machine learning has shown extensive growth in recent years and is now routinely applied to sensitive areas1. To allow appropriate verification of predictive models before deployment, models must be deterministic. How... 详细信息
来源: 评论
An open unified deep graph learning framework for discovering drug leads
arXiv
收藏 引用
arXiv 2022年
作者: Yin, Yueming Hu, Haifeng Yang, Zhen Yang, Jitao Ye, Chun Wu, Jiansheng Goh, Wilson Wen Bin The School of Telecommunications and Information Engineering Nanjing University of Posts and Telecommunications Nanjing210003 China The School of Computer Science and Engineering Nanyang Technological University 637551 Singapore The National Engineering Research Center of Communications and Networking Nanjing University of Posts and Telecommunications Nanjing210003 China The School of Geographic and Biologic Information with Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province Nanjing University of Posts and Telecommunications Nanjing210023 China Lee Kong Chian School of Medicine School of Biological Sciences Nanyang Technological University 637551 Singapore Center for Biomedical Informatics 636921 Singapore
Computational discovery of ideal lead compounds is a critical process for modern drug discovery. It comprises multiple stages: hit screening, molecular property prediction, and molecule optimization. Current efforts a... 详细信息
来源: 评论
Mitigating medical dataset bias by learning adaptive agreement from a biased council
收藏 引用
Medical image analysis 2025年 105卷 103629页
作者: Luyang Luo Xin Huang Minghao Wang Zhuoyue Wan Wanteng Ma Hao Chen Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong China Department of Biomedical Informatics Harvard University Cambridge USA. Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong China. Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Hong Kong China. Department of Computing The Hong Kong Polytechnic University Hong Kong China. Department of Statistics and Data Science University of Pennsylvania Philadelphia USA. Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Hong Kong China Division of Life Science Hong Kong University of Science and Technology Hong Kong China HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian Shenzhen China State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Hong Kong China. Electronic address: jhc@cse.ust.hk.
dataset bias in images is an important yet less explored topic in medical images. Deep learning could be prone to learning spurious correlation raised by dataset bias, resulting in inaccurate, unreliable, and unfair m... 详细信息
来源: 评论
data gaps and opportunities for modeling cancer health equity
收藏 引用
Journal of the National Cancer Institute - Monographs 2023年 第62期2023卷 246-254页
作者: Trentham-Dietz, Amy Corley, Douglas A. Del Vecchio, Natalie J. Greenlee, Robert T. Haas, Jennifer S. Hubbard, Rebecca A. Hughes, Amy E. Kim, Jane J. Kobrin, Sarah Li, Christopher I. Meza, Rafael Neslund-Dudas, Christine M. Tiro, Jasmin A. Department of Population Health Sciences and Carbone Cancer Center School of Medicine and Public Health University of Wisconsin-Madison Madison WI United States Division of Research Kaiser Permanente Northern California Oakland CA United States Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle WA United States Marshfield Clinic Research Institute Marshfield WI United States Division of General Internal Medicine Massachusetts General Hospital Boston MA United States Department of Biostatistics Epidemiology and Informatics Perelman School of Medicine University of Pennsylvania Philadelphia PA United States Department of Population and Data Sciences University of Texas Southwestern Medical Center Dallas TX United States Department of Health Policy and Management Center for Health Decision Science Harvard T.H. Chan School of Public Health Boston MA United States Healthcare Delivery Research Program Division of Cancer Control & Population Sciences National Cancer Institute National Institutes of Health Rockville MD United States Department of Integrative Oncology British Columbia (BC) Cancer Research Institute Vancouver BC Canada Department of Public Health Sciences and Henry Ford Cancer Henry Ford Health Detroit MI United States Department of Public Health Sciences University of Chicago Biological Sciences Division University of Chicago Medicine Comprehensive Cancer Center Chicago IL United States
Population models of cancer reflect the overall US population by drawing on numerous existing data resources for parameter inputs and calibration targets. Models require data inputs that are appropriately representati...
来源: 评论