咨询与建议

限定检索结果

文献类型

  • 778 篇 期刊文献
  • 140 篇 会议

馆藏范围

  • 918 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 482 篇 工学
    • 298 篇 计算机科学与技术...
    • 267 篇 软件工程
    • 210 篇 生物医学工程(可授...
    • 142 篇 生物工程
    • 88 篇 光学工程
    • 52 篇 信息与通信工程
    • 33 篇 化学工程与技术
    • 33 篇 安全科学与工程
    • 30 篇 控制科学与工程
    • 26 篇 电气工程
    • 23 篇 电子科学与技术(可...
    • 18 篇 仪器科学与技术
    • 18 篇 材料科学与工程(可...
    • 10 篇 土木工程
  • 376 篇 医学
    • 306 篇 临床医学
    • 224 篇 基础医学(可授医学...
    • 122 篇 公共卫生与预防医...
    • 105 篇 药学(可授医学、理...
  • 367 篇 理学
    • 207 篇 生物学
    • 91 篇 数学
    • 64 篇 物理学
    • 49 篇 统计学(可授理学、...
    • 44 篇 化学
    • 13 篇 系统科学
  • 143 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 63 篇 图书情报与档案管...
    • 40 篇 工商管理
    • 28 篇 公共管理
  • 41 篇 农学
    • 11 篇 作物学
  • 19 篇 教育学
    • 13 篇 教育学
  • 7 篇 经济学
  • 7 篇 法学

主题

  • 27 篇 machine learning
  • 21 篇 deep learning
  • 19 篇 electronic healt...
  • 15 篇 diseases
  • 13 篇 covid-19
  • 13 篇 artificial intel...
  • 12 篇 image segmentati...
  • 12 篇 forecasting
  • 11 篇 diagnosis
  • 11 篇 accuracy
  • 10 篇 training
  • 9 篇 ophthalmology
  • 8 篇 magnetic resonan...
  • 8 篇 clinical researc...
  • 8 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 data models
  • 7 篇 prediction model...
  • 7 篇 genes
  • 7 篇 electronic healt...

机构

  • 24 篇 department of bi...
  • 13 篇 department of bi...
  • 10 篇 department of in...
  • 10 篇 department of me...
  • 9 篇 clinical big dat...
  • 8 篇 department of bi...
  • 8 篇 department of co...
  • 8 篇 wellcome centre ...
  • 8 篇 department of ge...
  • 8 篇 translational da...
  • 8 篇 university of pe...
  • 8 篇 department of bi...
  • 8 篇 department of bi...
  • 8 篇 department of bi...
  • 7 篇 royal stoke univ...
  • 7 篇 division of info...
  • 7 篇 department of tw...
  • 7 篇 department of bi...
  • 7 篇 cambridge univer...
  • 7 篇 department of co...

作者

  • 27 篇 xu hua
  • 18 篇 ning xia
  • 17 篇 mahmood faisal
  • 16 篇 chen qingyu
  • 15 篇 williamson drew ...
  • 15 篇 zitnik marinka
  • 13 篇 peng bo
  • 13 篇 klee sascha
  • 12 篇 chen tiffany y.
  • 12 篇 bian jiang
  • 12 篇 lu ming y.
  • 11 篇 chen richard j.
  • 11 篇 chen jonathan h.
  • 10 篇 chien ting-ying
  • 10 篇 jiang xiaoqian
  • 10 篇 raja kalpana
  • 9 篇 bakas spyridon
  • 9 篇 lu zhiyong
  • 9 篇 zhang rui
  • 9 篇 peek niels

语言

  • 811 篇 英文
  • 101 篇 其他
  • 5 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Biomedical Data Science and Informatics"
918 条 记 录,以下是61-70 订阅
排序:
Generating Synthetic Electronic Health Record (EHR) data: A Review with Benchmarking
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Xingran Wu, Zhenke Shi, Xu Cho, Hyunghoon Mukherjee, Bhramar Department of Biostatistics University of Michigan United States Department of Biomedical Informatics and Data Science Yale University United States Department of Biostatistics Yale University United States
Objectives: To conduct a scoping review of existing approaches for synthetic Electronic Health Records (EHR) data generation, to benchmark major methods with proposed open-source software, and to offer recommendations... 详细信息
来源: 评论
LITA: An Efficient LLM-assisted Iterative Topic Augmentation Framework
arXiv
收藏 引用
arXiv 2024年
作者: Chang, Chia-Hsuan Tsai, Jui-Tse Tsai, Yi-Hang Hwang, San-Yih Department of Biomedical Informatics & Data Science Yale University New Haven United States Department of Information Management National Sun Yat-sen University Kaohsiung Taiwan
Topic modeling is widely used for uncovering thematic structures within text corpora, yet traditional models often struggle with specificity and coherence in domain-focused applications. Guided approaches, such as See... 详细信息
来源: 评论
Higher-Order Newton Methods with Polynomial Work per Iteration
arXiv
收藏 引用
arXiv 2023年
作者: Ahmadi, Amir Ali Chaudhry, Abraar Zhang, Jeffrey Princeton University Operations Research and Financial Engineering United States Yale University Department of Biomedical Informatics and Data Science United States
We present generalizations of Newton’s method that incorporate derivatives of an arbitrary order d but maintain a polynomial dependence on dimension in their cost per iteration. At each step, our dth-order method use... 详细信息
来源: 评论
Me-LLaMA: Medical Foundation Large Language Models for Comprehensive Text Analysis and Beyond
arXiv
收藏 引用
arXiv 2024年
作者: Xie, Qianqian Chen, Qingyu Chen, Aokun Peng, Cheng Hu, Yan Lin, Fongci Peng, Xueqing Huang, Jimin Zhang, Jeffrey Keloth, Vipina Zhou, Xinyu Qian, Lingfei He, Huan Shung, Dennis Ohno-Machado, Lucila Wu, Yonghui Xu, Hua Bian, Jiang Department of Biomedical Informatics and Data Science Yale School of Medicine Yale University New HavenCT United States Department of Health Outcomes and Biomedical Informatics College of Medicine University of Florida GainesvilleFL United States School of Biomedical Informatics University of Texas Health Science Center at Houston HoustonTX United States Yale School of Medicine Yale University New HavenCT United States
Background Recent advancements in large language models (LLMs) like ChatGPT and LLaMA have shown promise in medical applications, though their performance in medical language understanding still requires enhancement. ... 详细信息
来源: 评论
Suicide Phenotyping from Clinical Notes in Safety-Net Psychiatric Hospital Using Multi-Label Classification with Pre-Trained Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Li, Zehan Hu, Yan Lane, Scott Selek, Salih Shahani, Lokesh Machado-Vieira, Rodrigo Soares, Jair Xu, Hua Liu, Hongfang Huang, Ming MacWilliam School of Biomedical Informatics The University of Texas Health Science Center HoustonTX United States Department of Psychiatry & Behavioral Sciences McGovern Medical School The University of Texas Health Science at Houston HoustonTX United States Section of Biomedical Informatics and Data Science School of Medicine Yale University New HavenCT United States
Accurate identification and categorization of suicidal events can yield better suicide precautions, reducing operational burden, and improving care quality in high-acuity psychiatric settings. Pre-trained language mod... 详细信息
来源: 评论
CFGNet: Coarse-to-Fine Grained Network for Image Classification of Confusing Fly Species  7
CFGNet: Coarse-to-Fine Grained Network for Image Classificat...
收藏 引用
7th International Conference on Pattern Recognition and Artificial Intelligence, PRAI 2024
作者: Niu, Lin Wang, Bo Niu, Baomin Zhang, Jin Liang, Danning Wu, Jingpeng Zhou, Rong Deng, Jianqiang School of Biomedical Informatics and Engineering Hainan Medical University Haikou China Hainan Vocational College of Political Science and Law Hainan Gongping Forensic Center Haikou China School of Big Data and Artificial Intelligence Zhengzhou University of Science and Technology Zhengzhou China Center for Educational Technology Hainan Medical University Haikou China Medicine of Hainan Medical University Department of Forensic Haikou China
In the realm of fine-grained image classification (FGIC), despite substantial technological advancements, models frequently misclassify certain fly species with exceedingly high inter-class similarity, thereby impacti... 详细信息
来源: 评论
Development of a Natural Language Processing Tool to Extract Acupuncture Point Location Terms
Development of a Natural Language Processing Tool to Extract...
收藏 引用
IEEE International Conference on Healthcare informatics (ICHI)
作者: Yiming Li Xueqing Peng Jianfu Li Suyuan Peng Donghong Pei Cui Tao Hua Xu Na Hong School of Biomedical Informatics The University of Texas Health Science Center at Houston Houston TX USA Section of Biomedical Informatics and Data Science School of Medicine Yale University New Haven CT USA National Institute of Health Data Science Peking University Beijing China The University of Texas MD Anderson Cancer Center Houston TX USA
Acupuncture point location information is significant to the effect of acupuncture therapy. A wealth of knowledge related to acupuncture point locations is typically dispersed across books or reports in free-text form...
来源: 评论
EMPATHIC: Emulating Human-Like Multimodal Personality Architecture Through Thoughtful Human-AI Conversation
EMPATHIC: Emulating Human-Like Multimodal Personality Archit...
收藏 引用
International Conference on Confluence The Next Generation Information Technology Summit (Confluence)
作者: Varshini Devi I I. R. Oviya Kalpana Raja Department of Computer Science and Engineering Amrita School of Computing Amrita Vishwa Vidyapeetham Chennai India Section for Biomedical Informatics and Data Science School of Medicine Yale University New Haven Connecticut USA
In the evolving landscape of human-computer interaction, this paper introduces an innovative framework poised to revolutionize chatbot systems. Our framework, meticulously designed for emotionally aware multimodal cha...
来源: 评论
CEHR-GPT: Generating Electronic Health Records with Chronological Patient Timelines
arXiv
收藏 引用
arXiv 2024年
作者: Pang, Chao Jiang, Xinzhuo Pavinkurve, Nishanth Parameshwar Kalluri, Krishna S. Minto, Elise L. Patterson, Jason Zhang, Linying Hripcsak, George Gürsoy, Gamze Elhadad, Noémie Natarajan, Karthik Department of Biomedical Informatics Columbia University Irving Medical Center United States Institute for Informatics Data Science and Biostatistics Washington University St Louis United States Medical Informatics Services New York-Presbyterian Hospital United States Observational Health Data Sciences and Informatics New York Genome Center New YorkNY United States Department of Computer Science Columbia University United States
Synthetic Electronic Health Records (EHR) have emerged as a pivotal tool in advancing healthcare applications and machine learning models, particularly for researchers without direct access to healthcare data. Althoug... 详细信息
来源: 评论
Predicting Protein-Protein Interactions Using Self-Attention-Based Deep Neural Networks and FastText Embeddings
Predicting Protein-Protein Interactions Using Self-Attention...
收藏 引用
International Conference on Computing and Networking Technology (ICCNT)
作者: I. R. Oviya N Shanmukha Sravya Kalpana Raja Department of Computer Science Engineering Amrita School Of Computing Amrita Vishwa Vidyapeetham Chennai India Section for Biomedical Informatics and Data Science School of Medicine Yale University New Haven Connecticut USA
Predicting Protein-protein interactions are central to understanding the intricate mechanisms governing cellular functions, as proteins seldom act in isolation. While current machine learning and deep learning models ... 详细信息
来源: 评论