咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 286 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
  • 152 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 地质学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 270 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
286 条 记 录,以下是101-110 订阅
排序:
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
arXiv
收藏 引用
arXiv 2022年
作者: Vaitl, Lorenz Nicoli, Kim Andrea Nakajima, Shinichi Kessel, Pan Machine Learning Group Department of Electrical Engineering & Computer Science Technische Universität Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany RIKEN Center for AIP Chuo City Tokyo103-0027 Japan
We propose an algorithm to estimate the path-gradient of both the reverse and forward Kullback–Leibler divergence for an arbitrary manifestly invertible normalizing flow. The resulting path-gradient estimators are st...
来源: 评论
Path-Gradient Estimators for Continuous Normalizing Flows
arXiv
收藏 引用
arXiv 2022年
作者: Vaitl, Lorenz Nicoli, Kim Andrea Nakajima, Shinichi Kessel, Pan Machine Learning Group Department of Electrical Engineering & Computer Science Technische Universität Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany RIKEN Center for AIP Chuo City Tokyo103-0027 Japan
Recent work has established a path-gradient estimator for simple variational Gaussian distributions and has argued that the path-gradient is particularly beneficial in the regime in which the variational distribution ...
来源: 评论
learning trivializing gradient flows for lattice gauge theories
收藏 引用
Physical Review D 2023年 第5期107卷 L051504-L051504页
作者: Simone Bacchio Pan Kessel Stefan Schaefer Lorenz Vaitl Computation-based Science and Technology Research Center The Cyprus Institute Nicosia Cyprus Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany John von Neumann-Institut für Computing NIC Deutsches Elektronen-Synchrotron DESY Germany
We propose a unifying approach that starts from the perturbative construction of trivializing maps by Lüscher and then improves on it by learning. The resulting continuous normalizing flow model can be implemente... 详细信息
来源: 评论
MARK MY WORDS: DANGERS OF WATERMARKED IMAGES IN IMAGENET
arXiv
收藏 引用
arXiv 2023年
作者: Bykov, Kirill Müller, Klaus-Robert Höhne, Marina M.-C. Technische Universität Berlin Machine Learning Group Berlin10587 Germany Understandable Machine Intelligence Lab ATB Potsdam14469 Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Korea University Department of Artificial Intelligence Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany Machine Learning Group UiT the Arctic University of Norway Tromsø9037 Norway Department of Computer Science University of Potsdam Potsdam14476 Germany
The utilization of pre-trained networks, especially those trained on ImageNet, has become a common practice in Computer Vision. However, prior research has indicated that a significant number of images in the ImageNet... 详细信息
来源: 评论
A machine learning and Explainable AI Framework Tailored for Unbalanced Experimental Catalyst Discovery
arXiv
收藏 引用
arXiv 2024年
作者: Semnani, Parastoo Bogojeski, Mihail Bley, Florian Zhang, Zizheng Wu, Qiong Kneib, Thomas Herrmann, Jan Weisser, Christoph Patcas, Florina Müller, Klaus-Robert Machine Learning Group TU Berlin Berlin Germany Berlin Institute for the Foundations of Learning and Data Berlin Germany BASLEARN-TU Berlin BASF Joint Lab for Machine Learning TU Berlin Berlin Germany Georg-August-University Göttingen Statistics and Campus Institute Data Science Göttingen Germany BASF SE Ludwigshafen Germany Max Planck Institute for Informatics Saarbrücken Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of
The successful application of machine learning in catalyst design depends on high-quality and diverse data to ensure effective generalization to novel compositions, thereby aiding in catalyst discovery. However, due t... 详细信息
来源: 评论
Software for dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy
arXiv
收藏 引用
arXiv 2021年
作者: Anders, Christopher J. Neumann, David Samek, Wojciech Müller, Klaus-Robert Lapuschkin, Sebastian Machine Learning Group Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Fraunhofer Heinrich Hertz Institute Berlin Germany Machine Learning and Communications Group Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institut für Informatik Saarbrücken Germany
Deep Neural Networks (DNNs) are known to be strong predictors, but their prediction strategies can rarely be understood. With recent advances in Explainable Artificial Intelligence (XAI), approaches are available to e... 详细信息
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
arXiv
收藏 引用
arXiv 2023年
作者: Koehler, Gregor Wald, Tassilo Ulrich, Constantin Zimmerer, David Jaeger, Paul F. Franke, Jörg K.H. Kohl, Simon Isensee, Fabian Maier-Hein, Klaus H. Heidelberg Division of Medical Image Computing Germany Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Helmholtz Imaging DKFZ Germany NCT Heidelberg a partnership between DKFZ University Medical Center Heidelberg Germany Interactive Machine Learning Group DKFZ Applied Computer Vision Lab DKFZ Machine Learning Lab University of Freiburg Freiburg Germany London United Kingdom Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu... 详细信息
来源: 评论
AUTRAINER: A MODULAR AND EXTENSIBLE DEEP learning TOOLKIT FOR COMPUTER AUDITION TASKS
arXiv
收藏 引用
arXiv 2024年
作者: Rampp, Simon Triantafyllopoulos, Andreas Milling, Manuel Schuller, Björn W. Technical University of Munich Munich Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom MCML - Munich Center for Machine Learning Munich Germany MDSI - Munich Data Science Institute Munich Germany
This work introduces the key operating principles for autrainer, our new deep learning training framework for computer audition tasks. autrainer is a PyTorch-based toolkit that allows for rapid, reproducible, and easi... 详细信息
来源: 评论
OADAT: Experimental and Synthetic Clinical Optoacoustic data for Standardized Image Processing
arXiv
收藏 引用
arXiv 2022年
作者: Ozdemir, Firat Lafci, Berkan Deán-Ben, Xosé Luís Razansky, Daniel Perez-Cruz, Fernando Swiss Data Science Center ETH Zurich and EPFL Zurich Switzerland Institute of Pharmacology and Toxicology Institute for Biomedical Engineering Faculty of Medicine University of Zurich Switzerland Institute for Biomedical Engineering Department of Information Technology and Electrical Engineering ETH Zurich Switzerland Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by subsequent detection of ultrasound waves generated via light-absorption-mediated thermoelastic e... 详细信息
来源: 评论
BrainIB: Interpretable Brain Network-based Psychiatric Diagnosis with Graph Information Bottleneck
arXiv
收藏 引用
arXiv 2022年
作者: Zheng, Kaizhong Yu, Shujian Li, Baojuan Jenssen, Robert Chen, Badong National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Xi’an China The Department of Computer Science Vrije Universiteit Amsterdam Amsterdam and the Machine Learning Group UiT - Arctic University of Norway Tromsø Norway The Machine Learning Group UiT - Arctic University of Norway Tromsø Norway The School of Biomedical Engineering Fourth Military Medical University Xi’an China
Developing a new diagnostic models based on the underlying biological mechanisms rather than subjective symptoms for psychiatric disorders is an emerging consensus. Recently, machine learning-based classifiers using f... 详细信息
来源: 评论