咨询与建议

限定检索结果

文献类型

  • 214 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 284 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 194 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
    • 5 篇 土木工程
  • 150 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 268 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
284 条 记 录,以下是121-130 订阅
排序:
Myocarditis Diagnosis: A Method using Mutual learning-Based ABC and Reinforcement learning
Myocarditis Diagnosis: A Method using Mutual Learning-Based ...
收藏 引用
International Symposium on Computational Intelligence and Informatics
作者: Saba Danaei Arsam Bostani Seyed Vahid Moravvej Fardin Mohammadi Roohallah Alizadehsani Afshin Shoeibi Hamid Alinejad-Rokny Saeid Nahavandi Adiban Institute of Higher Education Semnan Iran Department of mechanical engineering of biosystems Urmia university Department of exercise physiology & health science University of tehran Internship in UNSW BioMedical Machine Learning Lab Sydney NSW Australia Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Waurn Ponds Victoria Australia UNSW Data Science Hub The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW Australia
Myocarditis occurs when the heart muscle becomes inflamed and inflammation occurs when your body’s immune system responds to infections. It can be diagnosed using cardiac magnetic resonance image (MRI), a non-invasiv... 详细信息
来源: 评论
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Linhardt, Lorenz Müller, Klaus-Robert Montavon, Grégoire Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data - BIFOLD Berlin10587 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany Google DeepMind Berlin Germany Department of Mathematics and Computer Science Freie Universität Berlin Berlin14195 Germany
Robustness has become an important consideration in deep learning. With the help of explainable AI, mismatches between an explained model's decision strategy and the user's domain knowledge (e.g. Clever Hans e... 详细信息
来源: 评论
XAI for Transformers: Better Explanations through Conservative Propagation
arXiv
收藏 引用
arXiv 2022年
作者: Ali, Ameen Ali Schnake, Thomas Eberle, Oliver Montavon, Grégoire Müller, Klaus-Robert Wolf, Lior The School of Computer Science Tel-Aviv University Israel Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany
Transformers have become an important workhorse of machine learning, with numerous applications. This necessitates the development of reliable methods for increasing their transparency. Multiple interpretability metho... 详细信息
来源: 评论
Affective Computing Has Changed: The Foundation Model Disruption
arXiv
收藏 引用
arXiv 2024年
作者: Schuller, Björn Mallol-Ragolta, Adria Almansa, Alejandro Peña Tsangko, Iosif Amin, Mostafa M. Semertzidou, Anastasia Christ, Lukas Amiriparian, Shahin MRI Technical University of Munich Germany MDSI - Munich Data Science Institute Germany MCML - Munich Center for Machine Learning Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom EIHW - Embedded Intelligence for Health Care & Wellbeing University of Augsburg Germany School of Engineering Universidad Autonoma de Madrid Spain AI R&D Team SyncPilot GmbH Germany
The dawn of Foundation Models has on the one hand revolutionised a wide range of research problems, and, on the other hand, democratised the access and use of AI-based tools by the general public. We even observe an i...
来源: 评论
Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations
arXiv
收藏 引用
arXiv 2023年
作者: Khan, Danish Heinen, Stefan von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
The feature vector mapping used to represent chemical systems is a key factor governing the superior data-efficiency of kernel based quantum machine learning (QML) models applicable throughout chemical compound space.... 详细信息
来源: 评论
Personalised Speech-Based PTSD Prediction Using Weighted-Instance learning
Personalised Speech-Based PTSD Prediction Using Weighted-Ins...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Alexander Kathan Shahin Amiriparian Andreas Triantafyllopoulos Alexander Gebhard Sabrina Milkus Jonas Hohmann Pauline Muderlak Jürgen Schottdorf Richard Musil Björn W. Schuller EIHW – Chair of Embedded Intelligence for Healthcare and Wellbeing University of Augsburg Germany CHI – Chair of Health Informatics MRI Technical Univsersity of Munich Germany MCML – Munich Center for Machine Learning Germany Department of Psychiatry and Psychotherapy University Hospital LMU Munich Germany Zentrumspraxis Friedberg Germany GLAM – Group on Language Audio & Music Imperial College London UK MDSI – Munich Data Science Institute Germany
Post-traumatic stress disorder (PTSD) is a prevalent disorder that can develop in people who have experienced very stressful, shocking, or distressing events. It has great influence on peoples’ daily life and can aff... 详细信息
来源: 评论
learning Trivializing Gradient Flows for Lattice Gauge Theories
arXiv
收藏 引用
arXiv 2022年
作者: Bacchio, Simone Kessel, Pan Schaefer, Stefan Vaitl, Lorenz Computation-based Science and Technology Research Center The Cyprus Institute Nicosia Cyprus Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD—Berlin Institute for the Foundations of Learning and Data Berlin Germany John Von Neumann-Institut für Computing NIC Deutsches Elektronen-Synchrotron DESY Germany
We propose a unifying approach that starts from the perturbative construction of trivializing maps by Lüscher and then improves on it by learning. The resulting continuous normalizing flow model can be implemente... 详细信息
来源: 评论
T-Cell Receptor Optimization with Reinforcement learning and Mutation Polices for Precision Immunotherapy  27th
T-Cell Receptor Optimization with Reinforcement Learning an...
收藏 引用
27th International Conference on Research in Computational Molecular Biology, RECOMB 2023
作者: Chen, Ziqi Min, Martin Renqiang Guo, Hongyu Cheng, Chao Clancy, Trevor Ning, Xia Computer Science and Engineering The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs PrincetonNJ08540 United States Digital Technologies Research Centre National Research Council Canada Ontario Canada Department of Medicine Baylor College of Medicine HoustonTX77030 United States NEC Oncolmmunity AS Oslo Cancer Cluster Innovation Park Ullernchausséen 64 Oslo0379 Norway Biomedical Informatics The Ohio State University ColumbusOH43210 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these pe... 详细信息
来源: 评论
Adaptive hybrid density functionals
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Danish Price, Alastair James Arthur Ach, Maximilian L. von Lilienfeld, O. Anatole Trottier, Olivier Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoON Canada Acceleration Consortium University of Toronto TorontoON Canada Department of Physics University of Toronto St. George Campus TorontoON Canada Department of Physics Ludwig-Maximilians-Universität Munich Germany Department of Materials Science and Engineering University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Exact exchange and correlation contributions are known to crucially affect electronic states, which in turn govern covalent bond formation and breaking in chemical species. Empirically averaging the exact exchange adm... 详细信息
来源: 评论
Heat flux for semilocal machine-learning potentials
收藏 引用
Physical Review B 2023年 第10期108卷 L100302-L100302页
作者: Marcel F. Langer Florian Knoop Christian Carbogno Matthias Scheffler Matthias Rupp Machine Learning Group Technische Universität Berlin 10587 Berlin Germany Berlin Institute for the Foundations of Learning and Data 10623 Berlin Germany The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt Universität zu Berlin 14195 Berlin Germany Theoretical Physics Division Department of Physics Chemistry and Biology (IFM) Linköping University 581 83 Linköping Sweden Department of Computer and Information Science University of Konstanz 78464 Konstanz Germany Materials Research and Technology Department Luxembourg Institute of Science and Technology Belvaux Luxembourg
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. machine-... 详细信息
来源: 评论