咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 286 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
  • 152 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 地质学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 270 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
286 条 记 录,以下是131-140 订阅
排序:
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
RecycleNet: Latent Feature Recycling Leads to Iterative Deci...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Gregor Koehler Tassilo Wald Constantin Ulrich David Zimmerer Paul F. Jaeger Jörg K. H. Franke Simon Kohl Fabian Isensee Klaus H. Maier-Hein Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany Helmholtz Imaging DKFZ National Center for Tumor Diseases (NCT) NCT Heidelberg a Partnership Between DKFZ University Medical Center Heidelberg Interactive Machine Learning Group DKFZ Machine Learning Lab University of Freiburg Freiburg Germany Latent Labs (***) London UK Applied Computer Vision Lab DKFZ Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu...
来源: 评论
Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging
arXiv
收藏 引用
arXiv 2021年
作者: Hashemi, Ali Gao, Yijing Cai, Chang Ghosh, Sanjay Müller, Klaus-Robert Nagarajan, Srikantan S. Haufe, Stefan Uncertainty Inverse Modeling and Machine Learning Group Technische Universität Berlin Germany Machine Learning Group Technische Universität Berlin Germany Department of Radiology and Biomedical Imaging University of California San Francisco United States National Engineering Research Center for E-Learning Central China Normal University China BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany Physikalisch-Technische Bundesanstalt Berlin Germany Charité – Universitätsmedizin Berlin Germany Bernstein Center for Computational Neuroscience Berlin Germany
Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI ... 详细信息
来源: 评论
Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research
arXiv
收藏 引用
arXiv 2024年
作者: Hille, Tobias Stubbemann, Maximilian Hanika, Tom Knowledge & Data Engineering Group University of Kassel Kassel Germany Interdisciplinary Research Center for Information System Design University of Kassel Kassel Germany Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany Institute of Computer Science University of Hildesheim Hildesheim Germany
Difficulties in replication and reproducibility of empirical evidences in machine learning research have become a prominent topic in recent years. Ensuring that machine learning research results are sound and reliable... 详细信息
来源: 评论
RBGNet: Ray-based grouping for 3D Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Haiyang Shi, Shaoshuai Yang, Ze Fang, Rongyao Qian, Qi Li, Hongsheng Schiele, Bernt Wang, Liwei Center for Data Science Peking University China Max Planck Institute for Informatics Germany University of Toronto Canada The Chinese University of Hong Kong Hong Kong Alibaba Group China Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China International Center for Machine Learning Research Peking University China
As a fundamental problem in computer vision, 3D object detection is experiencing rapid growth. To extract the point-wise features from the irregularly and sparsely distributed points, previous methods usually take a f... 详细信息
来源: 评论
Transferring Traffic Predictions to Urban Regions Without Target data
Transferring Traffic Predictions to Urban Regions Without Ta...
收藏 引用
International Conference on Intelligent Transportation
作者: Stefan Schestakov Simon Gottschalk Nicolas Tempelmeier Thorben Funke Elena Demidova L3S Research Center Leibniz University Hannover Hannover Germany Volkswagen AG Commercial Vehicles Hannover Germany Data Science & Intelligent Systems (DSIS) Research Group University of Bonn and Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany
The scarcity of spatiotemporal traffic data for many urban regions significantly limits the availability of location-specific predictive models for traffic management, mobility services, and road safety. For example, ... 详细信息
来源: 评论
Automatic Diagnosis of Myocarditis Disease in Cardiac MRI Modality using Deep Transformers and Explainable Artificial Intelligence
arXiv
收藏 引用
arXiv 2022年
作者: Jafari, Mahboobeh Shoeibi, Afshin Ghassemi, Navid Heras, Jonathan Ling, Sai Ho Beheshti, Amin Zhang, Yu-Dong Wang, Shui-Hua Alizadehsani, Roohallah Gorriz, Juan M. Acharya, U. Rajendra Rokny, Hamid Alinejad Internship in BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia Data Science and Computational Intelligence Institute University of Granada Spain Department of Mathematics and Computer Science University of La Rioja La Rioja Spain Australia Data Analytics Lab Department of Computing Macquarie University SydneyNSW2109 Australia School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Deakin University VIC3217 Australia Department of Psychiatry University of Cambridge United Kingdom School of Mathematics Physics and Computing University of Southern Queensland Springfield Australia BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia UNSW Data Science Hub The University of New South Wales SydneyNSW2052 Australia Research Centre Macquarie University Sydney2109 Australia
Myocarditis is a significant cardiovascular disease (CVD) that poses a threat to the health of many individuals by causing damage to the myocardium. The occurrence of microbes and viruses, including the likes of HIV, ... 详细信息
来源: 评论
Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Yenho Mudrik, Noga Johnsen, Kyle A. Alagapan, Sankaraleengam Charles, Adam S. Rozell, Christopher J. Machine Learning Center Georgia Institute of Technology United States School of Electrical and Computer Engineering Georgia Institute of Technology United States Coulter Dept. of Biomedical Engineering Emory University Georgia Institute of Technology United States Department of Biomedical Engineering Mathematical Institute for Data Science Center for Imaging Science Kavli Neuroscience Discovery Institute Johns Hopkins University United States
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals. For example, switching and decomposed models describe complex systems using laten... 详细信息
来源: 评论
Artificial intelligence research activities and sirections in the NTT group
收藏 引用
NTT Technical Review 2016年 第5期14卷
作者: Yamada, Takeshi Takahashi, Satoshi Naya, Futoshi Ikebe, Takashi Furukawa, Shigeto Research Planning Section Machine Learning and Data Science Center NTT Communication Science Laboratories Japan Speech and Language Media Project NTT Media Intelligence Laboratories Japan Innovative Communication Laboratory NTT Communication Science Laboratories Japan NTT Network Service Systems Laboratories Japan Sensory Resonance Research Group Human Information Science Laboratory NTT Communication Science Laboratories Japan
The research and development of artificial intelligence (AI) at NTT is advancing along four directions: (1) Agent-AI for analyzing information issued by people and understanding intentions and emotions in that informa... 详细信息
来源: 评论
Towards Robust Knowledge Tracing Models via k-Sparse Attention
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Shuyan Liu, Zitao Zhao, Xiangyu Luo, Weiqi Weng, Jian Think Academy International Education TAL Education Group Beijing China Guangdong Institute of Smart Education Jinan University Guangzhou China Applied Machine Learning Lab School of Data Science City University of Hong Kong Hong Kong College of Cyber Security Jinan University Guangzhou China
Knowledge tracing (KT) is the problem of predicting students' future performance based on their historical interaction sequences. With the advanced capability of capturing contextual long-term dependency, attentio... 详细信息
来源: 评论
An automatic analysis of ultrasound vocalisations for the prediction of interaction context in captive Egyptian fruit bats
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Gebhard, Alexander Milling, Manuel Rampp, Simon Schuller, Björn Technical University of Munich MRI Munich Germany EIHW - Embedded Intelligence for Health Care and Wellbeing Augsburg Germany MCML - Munich Center for Machine Learning Munich Germany MDSI - Munich Data Science Institute Munich Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom
Prior work in computational bioacoustics has mostly focused on the detection of animal presence in a particular habitat. However, animal sounds contain much richer information than mere presence;among others, they enc... 详细信息
来源: 评论