咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 286 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
  • 152 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 地质学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 270 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
286 条 记 录,以下是141-150 订阅
排序:
Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multimodal data
收藏 引用
Signal Transduction and Targeted Therapy 2024年 第9期9卷 4137-4148页
作者: Zifan Chen Yang Chen Yu Sun Lei Tang Li Zhang Yajie Hu Meng He Zhiwei Li Siyuan Cheng Jiajia Yuan Zhenghang Wang Yakun Wang Jie Zhao Jifang Gong Liying Zhao Baoshan Cao Guoxin Li Xiaotian Zhang Bin Dong Lin Shen Center for Data Science Peking UniversityBeijingChina Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Pathology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Radiology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina National Biomedical Imaging Center Peking UniversityBeijingChina Department of General Surgery Nanfang HospitalSouthern Medical UniversityGuangzhouChina Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor GuangzhouChina Department of Medical Oncology and Radiation Sickness Peking University Third HospitalBeijingChina National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijingChina Beijing International Center for Mathematical Research(BICMR) Peking UniversityBeijingChina Center for Machine Learning Research Peking UniversityBeijingChina
The sole use of single modality data often fails to capture the complex heterogeneity among patients,including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens,for the tre... 详细信息
来源: 评论
Deep Reinforcement learning for Beam Angle Optimization of Intensity-Modulated Radiation Therapy
arXiv
收藏 引用
arXiv 2023年
作者: Bao, Peng Wang, Gong Yang, Ruijie Dong, Bin The Center for Data Science Peking University the Department of Radiation Oncology Peking University Third Hospital Beijing China The Department of Radiation Oncology Peking University Third Hospital Beijing China Beijing International Center for Mathematical Research Center for Machine Learning Research National Biomedical Imaging Center Peking University Beijing China
Objective: Intensity-modulated radiation therapy (IMRT) beam angle optimization (BAO) is a challenging combinatorial optimization problem that is NP-hard. In this study, we aim to develop a personalized BAO algorithm ... 详细信息
来源: 评论
Embarrassingly Simple Scribble Supervision for 3D Medical Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Gotkowski, Karol Lüth, Carsten Jäger, Paul F. Ziegler, Sebastian Krämer, Lars Denner, Stefan Xiao, Shuhan Disch, Nico Maier-Hein, Klaus H. Isensee, Fabian Division of Medical Image Computing DKFZ Heidelberg Germany Helmholtz Imaging DKFZ Heidelberg Germany Interactive Machine Learning Group DKFZ Heidelberg Germany Medical Faculty Heidelberg University of Heidelberg Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Germany
Traditionally, segmentation algorithms require dense annotations for training, demanding significant annotation efforts, particularly within the 3D medical imaging field. Scribble-supervised learning emerges as a poss... 详细信息
来源: 评论
Explainability and transparency in the realm of digital humanities: toward a historian XAI
收藏 引用
International Journal of Digital Humanities 2023年 第2期5卷 299-331页
作者: El-Hajj, Hassan Eberle, Oliver Merklein, Anika Siebold, Anna Shlomi, Noga Büttner, Jochen Martinetz, Julius Müller, Klaus-Robert Montavon, Grégoire Valleriani, Matteo Max Planck Institute for the History of Science Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany German Center for Art History Paris (DFK Paris) Paris France The Cohn Institute for the History and Philosophy of Science and Ideas Faculty of Humanities Tel-Aviv University Tel-Aviv Israel Department of Artificial Intelligence Korea University Seoul South Korea Max Planck Institute for Informatics Saarbrüken Germany Department of Mathematics and Computer Science Freie Universität Berlin Berlin Germany
The recent advancements in the field of Artificial Intelligence (AI) translated to an increased adoption of AI technology in the humanities, which is often challenged by the limited amount of annotated data, as well a...
来源: 评论
Audio Enhancement for Computer Audition – An Iterative Training Paradigm Using Sample Importance
arXiv
收藏 引用
arXiv 2024年
作者: Milling, Manuel Liu, Shuo Triantafyllopoulos, Andreas Aslan, Ilhan Schuller, Björn W. EIHW – Embedded Intelligence for Health Care & Wellbeing University of Augsburg Germany MRI Technical University of Munich Germany MCML – Munich Center for Machine Learning Germany Huawei Technologies Munich Germany MDSI – Munich Data Science Institute Germany GLAM – The Group on Language Audio & Music Imperial College London United Kingdom
Neural network models for audio tasks, such as automatic speech recognition (ASR) and acoustic scene classification (ASC), are susceptible to noise contamination for real-life applications. To improve audio quality, a... 详细信息
来源: 评论
Ranking-based convolutional neural network models for peptide-MHC binding prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Ziqi Min, Martin Renqiang Ning, Xia Computer Science and Engineering Department Ohio State University ColumbusOH United States Machine Learning Department NEC Labs America PrincetonNJ United States Biomedical Informatics Department Ohio State University ColumbusOH United States Translational Data Analytics Institute Ohio State University ColumbusOH United States
T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC cla... 详细信息
来源: 评论
Advanced Process Control in Manufacturing Using IoT Devices and Artificial Neural Networks  4
Advanced Process Control in Manufacturing Using IoT Devices ...
收藏 引用
4th International Conference on Sustainable Expert Systems, ICSES 2024
作者: Sumathi, V. Ramesh, S. Basavaraddi, Chethan Chandra S. Visumathi, J. Ishwarya, M.V. Srinivasan, S. Sri Sairam Engineering College Department of Mathematics Tamil Nadu Chennai India School of Computing College of Engineering and Technology Srm Institute of Science and Technology Department of Computing Technologies Kattankulathur Tamil Nadu Chennai India R&d Don Bosco Institute of Technology Vtu Department of Artificial Intelligence and Machine Learning Karnataka Belagavi India Veltech Rangarajan Dr. Sagunthala R&d Institute of Science and Technology Department of Information Technology Tamil Nadu Chennai India Agni College of Technology Artificial intelligence and Data science Department Tamil Nadu Chennai India Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Saveetha University Department of Biomedical Engineering Tamil Nadu Chennai India
Optimization of industrial activities is significantly helped by Advanced Process Control (APC), which increases efficiency, decreases costs, and improves product quality. Artificial Neural Networks (ANNs) and the Int... 详细信息
来源: 评论
Analyzing Atomic Interactions in Molecules as Learned by Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Esders, Malte Schnake, Thomas Lederer, Jonas Kabylda, Adil Montavon, Grégoire Tkatchenko, Alexandre Müller, Klaus-Robert BIFOLD Berlin Institute for the Foundations of Learning and Data Germany Machine Learning Group Berlin Institute of Technology Berlin10587 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg Department of Mathematics and Computer Science Free University of Berlin Germany Google Deepmind Berlin Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany
While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for r... 详细信息
来源: 评论
Exponential line-crossing inequalities
arXiv
收藏 引用
arXiv 2018年
作者: Howard, Steven R. Ramdas, Aaditya McAuliffe, Jon Sekhon, Jasjeet Departments of Statistics Political Science UC Berkeley Durant Hall 101 MC 2930 Berkeley CA 94704 US BerkeleyCA94704 United States Departments of Statistics and Data Science Machine Learning Carnegie Mellon 5000 Forbes Ave PittsburghPA15213 United States Voleon Group 2150 Dwight Way BerkeleyCA94704 United States
This paper develops a class of exponential bounds for the probability that a martingale sequence crosses a time-dependent linear threshold. Our key insight is that it is both natural and fruitful to formulate exponent... 详细信息
来源: 评论
Weakly Supervised Object Detection with 2D and 3D Regression Neural Networks
arXiv
收藏 引用
arXiv 2019年
作者: Dubost, Florian Adams, Hieab Yilmaz, Pinar Bortsova, Gerda Van Tulder, Gijs Ikram, M. Arfan Niessen, Wiro Vernooij, Meike De Bruijne, Marleen Departments of Radiology and Medical Informatics Erasmus Medical Center Biomedical Imaging Group Rotterdam Rotterdam3015 GE Netherlands Departments of Radiology and Epidemiology Erasmus Medical Center Rotterdam3015 GE Netherlands Faculty of Applied Science Department of Imaging Physics Tu Delft Netherlands Department of Computer Science Machine Learning Section University of Copenhagen CopenhagenDK-2110 Denmark
Weakly supervised detection methods can infer the location of target objects in an image without requiring location or appearance information during training. We propose a weakly supervised deep learning method for th... 详细信息
来源: 评论