咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 286 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
  • 152 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 地质学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 270 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
286 条 记 录,以下是151-160 订阅
排序:
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
On-orbit measurements of the ISS atmosphere by the vehicle cabin atmosphere monitor
On-orbit measurements of the ISS atmosphere by the vehicle c...
收藏 引用
41st International Conference on Environmental Systems 2011, ICES 2011
作者: Darrach, M.R. Chutjian, A. Bornstein, B.J. Croonquist, A.P. Garkanian, V. Haemmerle, V.R. Hofman, J. Heinrichs, W.M. Karmon, D. Kenny, J. Kidd, R.D. Lee, S. MacAskill, J.A. Madzunkov, S.M. Mandrake, L. Rust, T.M. Schaefer, R.T. Thomas, J.L. Toomarian, N. Jet Propulsion Laboratory California Institute of Technology Pasadena CA 91109 United States Atomic and Molecular Physics Group JPL/Caltech United States Instrument Autonomy Group JPL/Caltech United States MicroDevices Group JPL/CalTech United States Optical Communications Group JPL/Caltech United States Processing Algorithms and Calibration Engineering JPL/Caltech United States Inst System Engineering JPL/Caltech United States Instruments and Science Data Systems JPL/Caltech United States Instrument Integration and Test JPL/Caltech United States Planetary Chemistry and Astrobiology JPL/Caltech United States High Capacity Computing and Modeling JPL/Caltech United States Machine Learning and Instrument Autonomy Group JPL/Caltech United States SpaceX 1 Rocket Rd Hawthorne CA 90250 United States Advanced Computer Systems and Technology JPL/Caltech United States Advanced Instrument Concepts JPL/Caltech United States
We report on trace gas and major atmospheric constituents results obtained by the Vehicle Cabin Atmosphere Monitor (VCAM) during operations aboard the International Space Station (ISS). VCAM is an autonomous environme... 详细信息
来源: 评论
An Automatic Analysis of Ultrasound Vocalisations for the Prediction of Interaction Context in Captive Egyptian Fruit Bats
An Automatic Analysis of Ultrasound Vocalisations for the Pr...
收藏 引用
European Signal Processing Conference (EUSIPCO)
作者: Andreas Triantafyllopoulos Alexander Gebhard Manuel Milling Simon Rampp Björn Schuller CHI - Chair of Health Informatics Technical University of Munich MRI Munich Germany EIHW - Chair of Embedded Intelligence for Health Care and Wellbeing Augsburg Germany MCML - Munich Center for Machine Learning Munich Germany MDSI - Munich Data Science Institute Munich Germany GLAM - Group on Language Audio & Music Imperial College London UK
Prior work in computational bioacoustics has mostly focused on the detection of animal presence in a particular habitat. However, animal sounds contain much richer information than mere presence; among others, they en... 详细信息
来源: 评论
Towards Symbolic Xai - Explanation Through Human Understandable Logical Relationships between Features
SSRN
收藏 引用
SSRN 2024年
作者: Schnake, Thomas Jafari, Farnoush Rezaei Lederer, Jonas Xiong, Ping Nakajima, Shinichi Gugler, Stefan Montavon, Grégoire Müller, Klaus-Robert Machine Learning Group Technical University of Berlin Berlin10623 Germany Berlin Institute for the Foundations of Learning and Data - BIFOLD Berlin10623 Germany RIKEN Saitama Wakō351-0198 Japan Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institut für Informatik Saarbrücken66123 Germany Institute for Computer Science Free University of Berlin Berlin14195 Germany
Explainable Artificial Intelligence (XAI) plays a crucial role in fostering transparency and trust in AI systems, where traditional XAI approaches typically offer one level of abstraction for explanations, often in th... 详细信息
来源: 评论
Design and Implementation of a data Governance Framework and Platform: A Case Study of a National Research Organization of Thailand
Design and Implementation of a Data Governance Framework and...
收藏 引用
International Joint Conference on Computer science and Software Engineering (JCSSE)
作者: Sapa Chanyachatchawan Krich Nasingkun Patipat Tumsangthong Porntiwa Chata Marut Buranarach Monsak Socharoentum Leveraging Technology Solutions Section National Electronics and Computer Technology Center Bangkok Thailand Strategic Analytics Networks with Machine Learning and AI Research National Electronics and Computer Technology Center Bangkok Thailand Data Science and Analytics Research Group National Electronics and Computer Technology Center Bangkok Thailand Digital Government Development Agency Bangkok Thailand
In the current era of extensive data usage across industries, data collection, preservation, utilization, and organization has become more challenging and nuanced because it is necessary to consider critical concerns ...
来源: 评论
Heat flux for semi-local machine-learning potentials
arXiv
收藏 引用
arXiv 2023年
作者: Langer, Marcel F. Knoop, Florian Carbogno, Christian Scheffler, Matthias Rupp, Matthias Machine Learning Group Technische Universität Berlin Berlin10587 Germany Bifold - Berlin Institute for the Foundations of Learning and Data Berlin Germany The Nomad Laboratory The Fhi of the Max-Planck-Gesellschaft Iris Adlershof The Humboldt Universität zu Berlin Germany Linköping University LinköpingSE-581 83 Sweden Department of Computer and Information Science University of Konstanz Konstanz78464 Germany Belvaux Luxembourg
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. machine-... 详细信息
来源: 评论
Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep learning Models: A Review
arXiv
收藏 引用
arXiv 2022年
作者: Jafari, Mahboobeh Shoeibi, Afshin Khodatars, Marjane Ghassemi, Navid Moridian, Parisa Delfan, Niloufar Alizadehsani, Roohallah Khosravi, Abbas Ling, Sai Ho Zhang, Yu-Dong Wang, Shui-Hua Gorriz, Juan M. Rokny, Hamid Alinejad Acharya, U. Rajendra Internship in BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia Data Science and Computational Intelligence Institute University of Granada Spain Department of Medical Engineering Mashhad Branch Islamic Azad University Mashhad Iran Faculty of Computer Engineering Dept. of Artificial Intelligence Engineering K. N. Toosi University of Technology Tehran Iran Deakin University VIC3217 Australia Australia School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Department of Psychiatry University of Cambridge United Kingdom BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia UNSW Data Science Hub The University of New South Wales SydneyNSW2052 Australia Research Centre Macquarie University Sydney2109 Australia Ngee Ann Polytechnic Singapore599489 Singapore Dept. of Biomedical Informatics and Medical Engineering Asia University Taichung Taiwan Dept. of Biomedical Engineering School of Science and Technology Singapore University of Social Sciences Singapore
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such... 详细信息
来源: 评论
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Linhardt, Lorenz Müller, Klaus-Robert Montavon, Grégoire Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data - BIFOLD Berlin10587 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany Google DeepMind Berlin Germany Department of Mathematics and Computer Science Freie Universität Berlin Berlin14195 Germany
Robustness has become an important consideration in deep learning. With the help of explainable AI, mismatches between an explained model's decision strategy and the user's domain knowledge (e.g. Clever Hans e... 详细信息
来源: 评论
Transition State Search and Geometry Relaxation throughout Chemical Compound Space with Quantum machine learning
arXiv
收藏 引用
arXiv 2022年
作者: Heinen, Stefan Von Rudorff, Guido Falk Von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria Vector Institute for Artificial Intelligence ON TorontoM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus ON Toronto Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
We use energies and forces predicted within response operator based quantum machine learning (OQML) to perform geometry optimization and transition state search calculations with legacy optimizers. For randomly sample... 详细信息
来源: 评论
Adaptive atomic basis sets
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Danish Ach, Maximillian L. von Lilienfeld, O. Anatole Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Physics University of Toronto St. George Campus TorontoON Canada Munich Germany Acceleration Consortium University of Toronto TorontoON Canada Department of Materials Science and Engineering University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Atomic basis sets are widely employed within quantum mechanics based simulations of matter. We introduce a machine learning model that adapts the basis set to the local chemical environment of each atom, prior to the ... 详细信息
来源: 评论