咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 286 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
  • 152 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 地质学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 270 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
286 条 记 录,以下是161-170 订阅
排序:
Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations
arXiv
收藏 引用
arXiv 2023年
作者: Khan, Danish Heinen, Stefan von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
The feature vector mapping used to represent chemical systems is a key factor governing the superior data-efficiency of kernel based quantum machine learning (QML) models applicable throughout chemical compound space.... 详细信息
来源: 评论
T-Cell Receptor Optimization with Reinforcement learning and Mutation Polices for Precision Immunotherapy  27th
T-Cell Receptor Optimization with Reinforcement Learning an...
收藏 引用
27th International Conference on Research in Computational Molecular Biology, RECOMB 2023
作者: Chen, Ziqi Min, Martin Renqiang Guo, Hongyu Cheng, Chao Clancy, Trevor Ning, Xia Computer Science and Engineering The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs PrincetonNJ08540 United States Digital Technologies Research Centre National Research Council Canada Ontario Canada Department of Medicine Baylor College of Medicine HoustonTX77030 United States NEC Oncolmmunity AS Oslo Cancer Cluster Innovation Park Ullernchausséen 64 Oslo0379 Norway Biomedical Informatics The Ohio State University ColumbusOH43210 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these pe... 详细信息
来源: 评论
Heat flux for semilocal machine-learning potentials
收藏 引用
Physical Review B 2023年 第10期108卷 L100302-L100302页
作者: Marcel F. Langer Florian Knoop Christian Carbogno Matthias Scheffler Matthias Rupp Machine Learning Group Technische Universität Berlin 10587 Berlin Germany Berlin Institute for the Foundations of Learning and Data 10623 Berlin Germany The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt Universität zu Berlin 14195 Berlin Germany Theoretical Physics Division Department of Physics Chemistry and Biology (IFM) Linköping University 581 83 Linköping Sweden Department of Computer and Information Science University of Konstanz 78464 Konstanz Germany Materials Research and Technology Department Luxembourg Institute of Science and Technology Belvaux Luxembourg
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. machine-... 详细信息
来源: 评论
SPEAR: Design and Implementation of an Advanced Virtual Assistant
SPEAR: Design and Implementation of an Advanced Virtual Assi...
收藏 引用
Sustainable Expert Systems (ICSES), International Conference on
作者: Garima Jain Amita Shukla Nitesh Kumar Bairwa Anamika Chaudhary Ashish Patel Ankush Jain Department of Computer Science and Buisness Systems Noida Institute of Engineering and Technology Greater Noida India Department of Artificial Intelligence Noida Institute of Engineering and Technology Greater Noida India Department of Data Science Noida Institute of Engineering and Technology Greater Noida India Department of Artificial Intelligence and Machine Learning Dronacharya Group of Institutions Greater Noida India Department of Computer Science and Enginnering Netaji Subhash University of Technology Delhi India
This research presents the development and evaluation of SPEAR, an advanced voice-activated personal desktop assistant designed to address challenges in existing virtual assistant technology, such as limited language ... 详细信息
来源: 评论
PAM: A Propagation-Based Model for Segmenting Any 3D Objects across Multi-Modal Medical Images
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zifan Nan, Xinyu Li, Jiazheng Zhao, Jie Li, Haifeng Lin, Ziling Li, Haoshen Chen, Heyun Liu, Yiting Tang, Lei Zhang, Li Dong, Bin Center for Data Science Peking University Beijing China Department of Radiology Key Laboratory of Carcinogenesis and Translational Research Ministry of Education Peking University Cancer Hospital and Institute Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Peking University Beijing China Center for Machine Learning Research Peking University Beijing China National Biomedical Imaging Center Peking University Beijing China
Background: Volumetric segmentation is crucial for medical imaging applications but faces significant challenges. Current approaches often require extensive manual annotations and scenario-specific model training, lim... 详细信息
来源: 评论
Improving generative model-based unfolding with Schrödinger bridges
收藏 引用
Physical Review D 2024年 第7期109卷 076011-076011页
作者: Sascha Diefenbacher Guan-Horng Liu Vinicius Mikuni Benjamin Nachman Weili Nie Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Autonomous Control and Decision Systems Laboratory Georgia Institute of Technology Atlanta Georgia 30332 USA National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA Machine Learning Research Group NVIDIA Research
machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area; one based on discriminative models and one ba... 详细信息
来源: 评论
Towards Symbolic XAI – Explanation Through Human Understandable Logical Relationships Between Features
arXiv
收藏 引用
arXiv 2024年
作者: Schnake, Thomas Jafari, Farnoush Rezaei Lederer, Jonas Xiong, Ping Nakajima, Shinichi Gugler, Stefan Montavon, Grégoire Müller, Klaus-Robert Berlin Institute for the Foundations of Learning and Data – BIFOLD Berlin10623 Germany Machine Learning Group Technical University of Berlin Berlin10623 Germany RIKEN AIP Tokyo103-0027 Japan Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institut für Informatik Saarbrücken66123 Germany Department of Mathematics and Computer Science Free University of Berlin Berlin14195 Germany
Explainable Artificial Intelligence (XAI) plays a crucial role in fostering transparency and trust in AI systems, where traditional XAI approaches typically offer one level of abstraction for explanations, often in th... 详细信息
来源: 评论
learning with group Noise
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Qizhou Yao, Jiangchao Gong, Chen Liu, Tongliang Gong, Mingming Yang, Hongxia Han, Bo Department of Computer Science Hong Kong Baptist University Hong Kong Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of MoE School of Computer Science and Engineering Nanjing University of Science and Technology China Data Analytics and Intelligence Lab Alibaba Group China Department of Computing Hong Kong Polytechnic University Hong Kong Trustworthy Machine Learning Lab School of Computer Science University of Sydney Australia School of Mathematics and Statistics University of Melbourne Australia
machine learning in the context of noise is a challenging but practical setting to plenty of real-world applications. Most of the previous approaches in this area focus on the pairwise relation (casual or correlationa... 详细信息
来源: 评论
Big data = Big Insights? Operationalising Brooks’ Law in a Massive GitHub data Set
arXiv
收藏 引用
arXiv 2022年
作者: Gote, Christoph Schweitzer, Frank Mavrodiev, Pavlin Scholtes, Ingo Department of Systems Design ETH Zurich Weinbergstrasse 56/58 Zurich8092 Switzerland Department of Computer Science XV - Machine Learning for Complex Networks Julius-Maximilians-Universität Würzburg Friedrich-Bergius-Ring 30 Würzburg97076 Germany Data Analytics Group University of Zurich Binzmühlestrasse 14 Zurich8050 Switzerland
Massive data from software repositories and collaboration tools are widely used to study social aspects in software development. One question that several recent works have addressed is how a software project’s size ... 详细信息
来源: 评论
COMPUTER AUDITION: FROM TASK-SPECIFIC machine learning TO FOUNDATION MODELS
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Tsangko, Iosif Gebhard, Alexander Mesaros, Annamaria Virtanen, Tuomas Schuller, Björn W. CHI – Chair of Health Informatics Technical University of Munich MRI Munich Germany Audio Research Group Tampere University Tampere Finland EIHW – Chair of Embedded Intelligence for Health Care and Wellbeing University of Augsburg Augsburg Germany GLAM – Group on Language Audio & Music Imperial College London United Kingdom MCML – Munich Center for Machine Learning Munich Germany MDSI – Munich Data Science Institute Munich Germany
Foundation models (FMs) are increasingly spearheading recent advances on a variety of tasks that fall under the purview of computer audition – the use of machines to understand sounds. They feature several advantages... 详细信息
来源: 评论