咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 286 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
  • 152 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 地质学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 270 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
286 条 记 录,以下是211-220 订阅
排序:
From quantum alchemy to Hammett's equation: Covalent bonding from atomic energy partitioning
arXiv
收藏 引用
arXiv 2022年
作者: Sahre, Michael J. von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 Vienna1090 Austria Währinger Str. 42 Vienna1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
We present an intuitive and general analytical approximation estimating the energy of covalent single and double bonds between participating atoms in terms of their respective nuclear charges with just three parameter... 详细信息
来源: 评论
Transformer-based normative modelling for anomaly detection of early schizophrenia
arXiv
收藏 引用
arXiv 2022年
作者: Da Costa, Pedro F. Dafflon, Jessica Mendes, Sergio Leonardo Sato, João Ricardo Jorge Cardoso, M. Leech, Robert Jones, Emily J.H. Pinaya, Walter H.L. Institute of Psychiatry Psychology & Neuroscience King’s College London United Kingdom Centre for Brain and Cognitive Development Birkbeck College London United Kingdom Data Science and Sharing Team National Institute of Mental Health BethesdaMD United States Machine Learning Team National Institute of Mental Health BethesdaMD United States Center of Mathematics Computing and Cognition Universidade Federal do ABC Brazil School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom
Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis remains a challenge. machine learning studies have shown that classifiers tend to be overly narrow in the diagnosis prediction task... 详细信息
来源: 评论
Brain Imaging Generation with Latent Diffusion Models
arXiv
收藏 引用
arXiv 2022年
作者: Pinaya, Walter H.L. Tudosiu, Petru-Daniel Dafflon, Jessica Da Costa, Pedro F. Fernandez, Virginia Nachev, Parashkev Ourselin, Sebastien Cardoso, M. Jorge Department of Biomedical Engineering School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom Data Science and Sharing Team Functional Magnetic Resonance Imaging Facility National Institute of Mental Health BethesdaMD20892 United States Machine Learning Team Functional Magnetic Resonance Imaging Facility National Institute of Mental Health BethesdaMD20892 United States Institute of Psychiatry Psychology & Neuroscience King’s College London United Kingdom Centre for Brain and Cognitive Development Birkbeck College United Kingdom Institute of Neurology University College London United Kingdom
Deep neural networks have brought remarkable breakthroughs in medical image analysis. However, due to their data-hungry nature, the modest dataset sizes in medical imaging projects might be hindering their full potent... 详细信息
来源: 评论
Encrypted machine learning of molecular quantum properties
arXiv
收藏 引用
arXiv 2022年
作者: Weinreich, Jan von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria University of Vienna Vienna Doctoral School in Physics Boltzmanngasse 5 Vienna1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Large machine learning models with improved predictions have become widely available in the chemical sciences. Unfortunately, these models do not protect the privacy necessary within commercial settings, prohibiting t... 详细信息
来源: 评论
Towards self-driving laboratories: The central role of density functional theory in the AI age
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Bing von Rudorff, Guido Falk Anatole von Lilienfeld, O. University of Vienna Faculty of Physics Kolingasse 14-16 WienAT1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Density functional theory (DFT) plays a pivotal role for the chemical and materials science due to its relatively high predictive power, applicability, versatility and computational efficiency. We review recent progre... 详细信息
来源: 评论
Large language models illuminate a progressive pathway to artificial intelligent healthcare assistant
Medicine Plus
收藏 引用
Medicine Plus 2024年 第2期1卷 102-124页
作者: Mingze Yuan Peng Bao Jiajia Yuan Yunhao Shen Zifan Chen Yi Xie Jie Zhao Quanzheng Li Yang Chen Li Zhang Lin Shen Bin Dong Center for Data Science Peking UniversityBeijing 100871China Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and Institute Beijing 100142China National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijing 100871China Beijing International Center for Mathematical Research Peking UniversityBeijing 100871China Center for Machine Learning Research Peking University Beijing 100871China National Biomedical Imaging Center Peking UniversityBeijing 100871China Peking University Changsha Institute for Computing and Digital Economy Changsha 410205China Massachusetts General Hospital Boston MA 02114-2696USA Harvard Medical School BostonMA 02115USA
With the rapid development of artificial intelligence,large language models(LLMs)have shown promising capabilities in mimicking human-level language comprehen-sion and *** has sparked significant interest in applying ... 详细信息
来源: 评论
Customer Segmentation Using Clustering Analysis
Customer Segmentation Using Clustering Analysis
收藏 引用
Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), IEEE International Conference on
作者: Moses Makuei Jiet Aahash Kamble Chetan Puri Prajyot Yesankar Prateek Verma Rajendra Rewatkar Department of Computer Science & Design Faculty of Engineering and Technology Datta Meghe Institute of Higher Education & Research (DU) Wardha Maharashtra India Department of Artificial Intelligence & Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education & Research (DU) Wardha Maharashtra India Department of Artificial Intelligence & Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education & Research (DU) Wardha Maharashtra India Department of Biomedical Engineering Faculty of Engineering and Technology Datta Meghe Institute of Higher Education & Research (DU) Wardha Maharashtra India
This research focuses on the crucial role of the clustering technique in data mining, specifically in market forecasting and planning. The study presents a comprehensive report on utilizing the k-means clustering tech... 详细信息
来源: 评论
AI-based Anomaly Detection for Clinical-Grade Histopathological Diagnostics
arXiv
收藏 引用
arXiv 2024年
作者: Dippel, Jonas Prenißl, Niklas Hense, Julius Liznerski, Philipp Winterhoff, Tobias Schallenberg, Simon Kloft, Marius Buchstab, Oliver Horst, David Alber, Maximilian Ruff, Lukas Müller, Klaus-Robert Klauschen, Frederick Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Institute of Pathology Charité – Universitätsmedizin Berlin Berlin Germany Berlin Institute of Health Charité – Universitätsmedizin Berlin BIH Biomedical Innovation Academy BIH Charité Junior Digital Clinician Scientist Program Charitéplatz 1 Berlin10117 Germany RPTU Kaiserslautern Germany Aignostics GmbH Berlin Germany Institute of Pathology Ludwig-Maximilians-Universität Munich Germany Munich Partner Site Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max-Planck Institute for Informatics Saarbrücken Germany
While previous studies have demonstrated the potential of AI to diagnose diseases in imaging data, clinical implementation is still lagging behind. This is partly because AI models require training with large numbers ... 详细信息
来源: 评论
CBAM_SAUNet: A novel attention U-Net for effective segmentation of corner cases
CBAM_SAUNet: A novel attention U-Net for effective segmentat...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Srividya Tirunellai Rajamani Kumar Rajamani Angeline J Karthika R Björn W. Schuller Chair of Embedded Intelligence for Health Care & Wellbeing University of Augsburg Germany Department of Artificial Intelligence Marwadi University Rajkot Gujarat India Department of Electronics and Communication Engineering Amrita School of Engineering Coimbatore Amrita Vishwa Vidyapeetham India CHI - Chair of Health Informatics MRI Technische Universität München (TUM) Germany Munich Data Science Institute Germany Munich Center for Machine Learning and GLAM - the Group on Language Audio & Music Imperial College London London UK
U-Net has been demonstrated to be effective for the task of medical image segmentation. Additionally, integrating attention mechanism into U-Net has been shown to yield significant benefits. The Shape Attentive U-Net ... 详细信息
来源: 评论
BIGDML: Towards exact machine learning force fields for materials
arXiv
收藏 引用
arXiv 2021年
作者: Sauceda, Huziel E. Gálvez-González, Luis E. Chmiela, Stefan Paz-Borbón, Lauro Oliver Müller, Klaus-Robert Tkatchenko, Alexandre Machine Learning Group Technische Universität Berlin Berlin10587 Germany BASLEARN TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany División de Ciencias Exactas y Naturales Universidad de Sonora Blvd. Luis Encinas & Rosales Hermosillo Mexico BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20-364 CDMX01000 Mexico Google Research Brain team Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany Department of Physics and Materials Science University of Luxembourg LuxembourgL-1511 Luxembourg
machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict the... 详细信息
来源: 评论