咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 286 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
  • 152 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 地质学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 270 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
286 条 记 录,以下是31-40 订阅
排序:
Robust Autonomous Vehicle Pursuit Without Expert Steering Labels
收藏 引用
IEEE Robotics and Automation Letters 2023年 第10期8卷 6595-6602页
作者: Pan, Jiaxin Zhou, Changyao Gladkova, Mariia Khan, Qadeer Cremers, Daniel Technical University of Munich Computer Vision Group Garching85748 Germany Munich Data Science Institute Garching85748 Germany Munich Center for Machine Learning Munchen80333 Germany University of Oxford OxfordOX1 3AZ United Kingdom
In this work, we present a learning method for both lateral and longitudinal motion control of an ego-vehicle for the task of vehicle pursuit. The car being controlled does not have a pre-defined route, rather it reac... 详细信息
来源: 评论
Self-supervised Sparse to Dense Motion Segmentation  15th
Self-supervised Sparse to Dense Motion Segmentation
收藏 引用
15th Asian Conference on Computer Vision, ACCV 2020
作者: Kardoost, Amirhossein Ho, Kalun Ochs, Peter Keuper, Margret Data and Web Science Group University of Mannheim Mannheim Germany Fraunhofer Center Machine Learning Sankt Augustin Germany Fraunhofer ITWM Competence Center HPC Kaiserslautern Germany Mathematical Optimization Group Saarland University Saarbrcken Germany
Observable motion in videos can give rise to the definition of objects moving with respect to the scene. The task of segmenting such moving objects is referred to as motion segmentation and is usually tackled either b... 详细信息
来源: 评论
SepLL: Separating Latent Class Labels from Weak Supervision Noise
SepLL: Separating Latent Class Labels from Weak Supervision ...
收藏 引用
2022 Findings of the Association for Computational Linguistics: EMNLP 2022
作者: Stephan, Andreas Kougia, Vasiliki Roth, Benjamin Research Group Data Mining and Machine Learning Faculty of Computer Science University of Vienna Vienna Austria UniVie Doctoral School Computer Science Vienna Austria Faculty of Philological and Cultural Studies University of Vienna Vienna Austria
In the weakly supervised learning paradigm, labeling functions automatically assign heuristic, often noisy, labels to data samples. In this work, we provide a method for learning from weak labels by separating two typ... 详细信息
来源: 评论
Tumor Detection, Segmentation and Classification Challenge on Automated 3D Breast Ultrasound: The TDSC-ABUS Challenge
arXiv
收藏 引用
arXiv 2025年
作者: Luo, Gongning Xu, Mingwang Chen, Hongyu Liang, Xinjie Tao, Xing Ni, Dong Jeong, Hyunsu Kim, Chulhong Stock, Raphael Baumgartner, Michael Kirchhoff, Yannick Rokuss, Maximilian Maier-Hein, Klaus Yang, Zhikai Fan, Tianyu Boutry, Nicolas Tereshchenko, Dmitry Moine, Arthur Charmetant, Maximilien Sauer, Jan Du, Hao Bai, Xiang-Hui Raikar, Vipul Pai Montoya-Del-Angel, Ricardo Martí, Robert Luna, Miguel Lee, Dongmin Qayyum, Abdul Mazher, Moona Guo, Qihui Wang, Changyan Awasthi, Navchetan Zhao, Qiaochu Wang, Wei Wang, Kuanquan Wang, Qiucheng Dong, Suyu School of Computer Science and Technology Harbin Institute of Technology Harbin150001 China Department of Mathematics Faculty of Science National University of Singapore Singapore National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Shenzhen University Medical School Shenzhen University Shenzhen China Laboratory Shenzhen University Shenzhen China School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China Pohang Korea Republic of Heidelberg Division of Medical Image Computing Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Germany Heidelberg Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Germany Department of Biomedical Engineering and Health KTH Royal Institute of Technology Stockholm Sweden France FathomX Singapore Saw Swee Hock School of Public Health National University of Singapore Singapore Philips Research University of Girona Spain Department of Robotics and Mechatronics Engineering DGIST Korea Republic of Department of Interdisciplinary Studies of Artificial Intelligence DGIST Korea Republic of National Heart and Lung Institute Faculty of Medicine Imperial College London London United Kingdom Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom Lab School of Communication and Information Engineering Shanghai University Shanghai China Faculty of Science Mathematics and Computer Science Informatics Institute University of Amsterdam Amsterdam1090 GH Netherlands Department of Biomedical Engineering and Physics Amsterdam UMC Amsterdam1081 HV Netherlands Xi’an Jiaotong-Liverpool University China Department of Ultrasound Harbin Medical University Cancer Hospital No. 150 Haping Road Nangang
Breast cancer is one of the most common causes of death among women worldwide. Early detection helps in reducing the number of deaths. Automated 3D Breast Ultrasound (ABUS) is a newer approach for breast screening, wh... 详细信息
来源: 评论
learning invariances with stationary subspace analysis
Learning invariances with stationary subspace analysis
收藏 引用
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009
作者: Meinecke, Frank C. Von Bünau, Paul Kawanabe, Motoaki Müller, Klaus-R. Machine Learning Group Dept. Computer Science TU Berlin Franklinstr. 28/29 10587 Berlin Germany Intelligent Data Analysis Group Fraunhofer FIRST.IDA Kekuléstr. 7 12489 Berlin Germany
Recently, a novel subspace decomposition method, termed 'Stationary Subspace Analysis' (SSA), has been proposed by Bünau et al. [10]. SSA aims to find a linear projection to a lower dimensional subspace s... 详细信息
来源: 评论
Non-separable spatiotemporal brain hemodynamics contain neural information
Non-separable spatiotemporal brain hemodynamics contain neur...
收藏 引用
International Workshop on machine learning and Interpretation in Neuroimaging, MLINI 2011, Held at Neural Information Processing, NIPS 2011
作者: Bießmann, Felix Murayama, Yusuke Logothetis, Nikos K. Müller, Klaus-Robert Meinecke, Frank C. Machine Learning Group Berlin Institute of Technology Germany Max-Planck Institute for Biological Cybernetics Tübingen Germany Division of Imaging Science and Biomedical Engineering University of Manchester United Kingdom Bernstein Center for Computational Neuroscience Berlin Germany
The goal of many functional Magnetic Resonance Imaging (fMRI) studies is to infer neural activity from hemodynamic signals. Classical fMRI analysis approaches assume a canonical hemodynamic response function (HRF), wh... 详细信息
来源: 评论
Pattern Discovery in an EEG database of Depression Patients: Preliminary Results  14
Pattern Discovery in an EEG Database of Depression Patients:...
收藏 引用
14th International Conference on Measurement, MEASUREMENT 2023
作者: Hlavackova-Schindler, Katerina Pacher, Christina Plant, Claudia Lazarenko, Mykola Palus, Milan Hlinka, Jaroslav Kathpalia, Aditi Brunovsky, Martin University of Vienna Data Mining and Machine Learning Research Group Faculty of Computer Science Vienna Austria Czech Academy of Sciences Institute of Computer Science Department of Complex Systems Prague Czech Republic National Institute of Mental Health Clinical Research Programme Klecany Czech Republic
The ability to predict response to medication treatment of depressed patients, either early in the course of therapy or before treatment even begins can avoid trials of ineffective therapy and save patients from prolo... 详细信息
来源: 评论
Comparing zero-shot self-explanations with human rationales in text classification
arXiv
收藏 引用
arXiv 2024年
作者: Brandl, Stephanie Eberle, Oliver Center for Social Data Science University of Copenhagen Denmark Machine Learning Group Technische Universität Berlin Germany
Instruction-tuned LLMs are able to provide an explanation about their output to users by generating self-explanations. These do not require gradient computations or the application of possibly complex XAI methods. In ... 详细信息
来源: 评论
167-PFlops deep learning for electron microscopy: From learning physics to atomic manipulation
167-PFlops deep learning for electron microscopy: From learn...
收藏 引用
2018 International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018
作者: Patton, Robert M. Travis Johnston, J. Young, Steven R. Schuman, Catherine D. March, Don D. Potok, Thomas E. Rose, Derek C. Lim, Seung-Hwan Karnowski, Thomas P. Ziatdinov, Maxim A. Kalinin, Sergei V. Oak Ridge National Laboratory Oak RidgeTN37831-6085 United States Computational Data Analytics Group United States Geographic Information Science and Technology Group United States Imaging Signals and Machine Learning Group United States Institute for Functional Imaging of Materials United States Center for Nanophase Materials Sciences United States
An artificial intelligence system called MENNDL, which used 25,200 NVIDIA Volta GPUs on Oak Ridge National Laboratory's Summit machine, automatically designed an optimal deep learning network in order to extract s... 详细信息
来源: 评论
Towards Predicting Menstrual Cycle Phases Exploiting Paralinguistic Features  46
Towards Predicting Menstrual Cycle Phases Exploiting Paralin...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Spiesberger, Anika A. Mallol-Ragolta, Adria Triantafyllopoulos, Andreas Schuller, Björn W. Chi - Health Informatics Klinikum rechts der Isar Technical University of Munich Germany Glam - Group on Language Audio & Music Imperial College London United Kingdom Mcml - Munich Center for Machine Learning Germany Mdsi - Munich Data Science Institute Germany
As a growing number of people focus on understanding their bodies, the menstrual cycle and its impact on reproduction are gaining attention. Several studies have shown that the voice changes during the menstrual cycle... 详细信息
来源: 评论