咨询与建议

限定检索结果

文献类型

  • 216 篇 期刊文献
  • 69 篇 会议
  • 1 册 图书

馆藏范围

  • 286 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 130 篇 计算机科学与技术...
    • 118 篇 软件工程
    • 60 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 26 篇 信息与通信工程
    • 22 篇 电气工程
    • 22 篇 化学工程与技术
    • 19 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 动力工程及工程热...
    • 7 篇 安全科学与工程
  • 152 篇 理学
    • 63 篇 数学
    • 62 篇 生物学
    • 60 篇 物理学
    • 32 篇 化学
    • 30 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 地质学
  • 45 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 40 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 2 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 20 篇 machine learning
  • 10 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 decision making
  • 6 篇 reinforcement le...
  • 6 篇 forecasting
  • 5 篇 benchmarking
  • 4 篇 deep neural netw...
  • 4 篇 graph neural net...
  • 4 篇 real-time system...
  • 4 篇 feature extracti...
  • 4 篇 artificial intel...
  • 4 篇 diseases
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 inverse problems
  • 3 篇 medical imaging
  • 3 篇 computational mo...
  • 3 篇 predictive model...

机构

  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 center for machi...
  • 10 篇 center for data ...
  • 10 篇 department of ar...
  • 9 篇 national biomedi...
  • 9 篇 bifold – berlin ...
  • 7 篇 university of pe...
  • 7 篇 university kasse...
  • 7 篇 heidelberg
  • 6 篇 department of ra...
  • 6 篇 bifold berlin in...
  • 6 篇 berlin institute...
  • 6 篇 department of ph...
  • 6 篇 beijing internat...
  • 6 篇 department of ar...
  • 6 篇 data and web sci...

作者

  • 24 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 schuller björn w...
  • 10 篇 von rudorff guid...
  • 8 篇 li hongwei bran
  • 8 篇 bakas spyridon
  • 8 篇 de bruijne marle...
  • 7 篇 kofler florian
  • 7 篇 menze bjoern
  • 6 篇 khan danish
  • 6 篇 li zhang
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 roth benjamin
  • 6 篇 bin dong
  • 6 篇 keuper margret
  • 6 篇 eberle oliver
  • 5 篇 pfreundt franz-j...

语言

  • 270 篇 英文
  • 16 篇 其他
检索条件"机构=Biomedical Data Science and Machine Learning Group"
286 条 记 录,以下是51-60 订阅
排序:
Automating airborne pollen classification: Identifying and interpreting hard samples for classifiers
收藏 引用
Heliyon 2025年 第2期11卷 e41656页
作者: Milling, Manuel Rampp, Simon D.N. Triantafyllopoulos, Andreas Plaza, Maria P. Brunner, Jens O. Traidl-Hoffmann, Claudia Schuller, Björn W. Damialis, Athanasios CHI – Chair of Health Informatics MRI Technical University of Munich Munich Germany MCML–Munich Center for Machine Learning Germany EIHW – Chair of Embedded Intelligence for Health Care & Wellbeing University of Augsburg Augsburg Germany Institute of Environmental Medicine and Integrative Health Faculty of Medicine University Clinic of Augsburg & University of Augsburg Augsburg Germany Institute of Environmental Medicine Helmholtz Center Munich German Research Center for Environmental Health Germany Faculty of Business and Economics and Faculty of Medicine University of Augsburg Augsburg Germany Department of Technology Management and Economics Technical University of Denmark Denmark Next Generation Technology Region Zealand Denmark Christine Kühne Center for Allergy Research and Education Davos Switzerland MDSI–Munich Data Science Institute Germany GLAM–the Group on Language Audio & Music Imperial College London London United Kingdom Terrestrial Ecology and Climate Change Department of Ecology School of Biology Faculty of Sciences Aristotle University of Thessaloniki Thessaloniki Greece
Deep-learning-based classification of pollen grains has been a major driver towards automatic monitoring of airborne pollen. Yet, despite an abundance of available datasets, little effort has been spent to investigate... 详细信息
来源: 评论
Time-uniform, nonparametric, nonasymptotic confidence sequences
arXiv
收藏 引用
arXiv 2018年
作者: Howard, Steven R. Ramdas, Aaditya McAuliffe, Jon Sekhon, Jasjeet Departments of Statistics Political Science UC Berkeley Departments of Statistics and Data Science United States Machine Learning Carnegie Mellon The Voleon Group United States
A confidence sequence is a sequence of confidence intervals that is uniformly valid over an unbounded time horizon. Our work develops confidence sequences whose widths go to zero, with nonasymptotic coverage guarantee... 详细信息
来源: 评论
machine learning algorithms to classify Fitzpatrick skin types during tissue oxygenation mapping
Machine learning algorithms to classify Fitzpatrick skin typ...
收藏 引用
Clinical and Translational Biophotonics, Translational 2022
作者: Kaile, Kacie Sobhan, Masrur Mondal, Ananda Godavarty, Anuradha Department of Biomedical Engineering Optical Imaging Laboratory Florida International University 10555 West Flagler St MiamiFL33174 United States Machine Learning and Data Analytics Group Knight Foundation School of Computing and Information Sciences Florida International University 11200 SW 8th St MiamiFL33199 United States
A machine learning approach is implemented to label different skin tones towards melanin correction of tissue oxygenation maps, when using a smartphone based near-infrared (NIR) imaging device. © 2022 Optica Publ... 详细信息
来源: 评论
Deep learning algorithms to classify Fitzpatrick skin types for smartphone based NIRS imaging device  15
Deep learning algorithms to classify Fitzpatrick skin types ...
收藏 引用
Next-Generation Spectroscopic Technologies XV 2023
作者: Leizaola, Daniela Sobhan, Masrur Kaile, Kacie Mondal, Ananda Mohan Godavarty, Anuradha Optical Imaging Laboratory Department of Biomedical Engineering Florida International University 10555 W Flagler St MiamiFL33174 United States Machine Learning and Data Analytics Group Knight Foundation School Computing and Information Sciences Florida International University 11200 SW 8th St MiamiFL33199 United States
Non-contact imaging modalities for monitoring wound health could supplement the current standard which is a visual inspection by clinicians. Recently, a smartphone oxygenation tool (SPOT) has been developed for physio... 详细信息
来源: 评论
Object Segmentation Tracking from Generic Video Cues
Object Segmentation Tracking from Generic Video Cues
收藏 引用
International Conference on Pattern Recognition
作者: Amirhossein Kardoost Sabine Müller Joachim Weickert Margret Keuper Data and Web Science Group University of Mannheim Mannheim Germany Fraunhofer Center Machine Learning Germany Mathematical Image Analysis Group Saarland University Saarbrücken Germany
We propose a light-weight variational framework for online tracking of object segmentations in videos based on optical flow and image boundaries. While high-end computer vision methods on this task rely on sequence sp... 详细信息
来源: 评论
CASSPR: Cross Attention Single Scan Place Recognition
CASSPR: Cross Attention Single Scan Place Recognition
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Yan Xia Mariia Gladkova Rui Wang Qianyun Li Uwe Stilla João F. Henriques Daniel Cremers Technical University of Munich Munich Center for Machine Learning (MCML) Visual Geometry Group University of Oxford Munich Data Science Institute Microsoft Zurich
Place recognition based on point clouds (LiDAR) is an important component for autonomous robots or self-driving vehicles. Current SOTA performance is achieved on accumulated LiDAR submaps using either point-based or v...
来源: 评论
Non-intrusive surrogate modelling using sparse random features with applications in crashworthiness analysis
arXiv
收藏 引用
arXiv 2022年
作者: Herold, Maternus Veselovska, Anna Jehle, Jonas Krahmer, Felix Department of Mathematics Technical University of Munich Germany Bmw Group Germany Munich Data Science Institute Germany Munich Center for Machine Learning Germany
Efficient surrogate modelling is a key requirement for uncertainty quantification in data-driven scenarios. In this work, a novel approach of using Sparse Random Features for surrogate modelling in combination with se... 详细信息
来源: 评论
Customer Segmentation Using Clustering Analysis
Customer Segmentation Using Clustering Analysis
收藏 引用
2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems, ICITEICS 2024
作者: Jiet, Moses Makuei Kamble, Aahash Puri, Chetan Yesankar, Prajyot Verma, Prateek Rewatkar, Rajendra Faculty of Engineering and Technology Department of Computer Science & Design Maharashtra Wardha442001 India Faculty of Engineering and Technology Department of Artificial Intelligence & Data Science Maharashtra Wardha442001 India Faculty of Engineering and Technology Department of Artificial Intelligence & Machine Learning Maharashtra Wardha442001 India Faculty of Engineering and Technology Department of Biomedical Engineering Maharashtra Wardha442001 India
This research focuses on the crucial role of the clustering technique in data mining, specifically in market forecasting and planning. The study presents a comprehensive report on utilizing the k-means clustering tech... 详细信息
来源: 评论
MAKING THERMODYNAMIC MODELS OF MIXTURES PREDICTIVE BY machine learning: MATRIX COMPLETION OF PAIR INTERACTIONS
arXiv
收藏 引用
arXiv 2022年
作者: Jirasek, Fabian Bamler, Robert Fellenz, Sophie Bortz, Michael Kloft, Marius Mandt, Stephan Hasse, Hans TU Kaiserslautern Kaiserslautern Germany Data Science and Machine Learning University of Tübingen Tübingen Germany Machine Learning Group TU Kaiserslautern Kaiserslautern Germany Kaiserslautern Germany Department of Computer Science University of California Irvine Irvine United States
Predictive models of thermodynamic properties of mixtures are paramount in chemical engineering and chemistry. Classical thermodynamic models are successful in generalizing over (continuous) conditions like temperatur... 详细信息
来源: 评论
A Coreset-based, Tempered Variational Posterior for Accurate and Scalable Stochastic Gaussian Process Inference
arXiv
收藏 引用
arXiv 2023年
作者: Ketenci, Mert Perotte, Adler Elhadad, Noémie Urteaga, Iñigo Columbia University New York United States BCAM Ikerbasque Bilbao Spain Department of Computer Science Department of Biomedical Informatics Machine Learning Group
We present a novel stochastic variational Gaussian process (GP) inference method, based on a posterior over a learnable set of weighted pseudo input-output points (coresets). Instead of a free-form variational family,... 详细信息
来源: 评论