咨询与建议

限定检索结果

文献类型

  • 85 篇 会议
  • 17 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 22 篇 机械工程
    • 17 篇 计算机科学与技术...
    • 16 篇 生物工程
    • 13 篇 软件工程
    • 10 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 信息与通信工程
    • 5 篇 仪器科学与技术
    • 4 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 13 篇 生物学
    • 11 篇 数学
    • 4 篇 系统科学
    • 4 篇 统计学(可授理学、...
    • 2 篇 物理学
  • 7 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 5 篇 艺术学
    • 5 篇 设计学(可授艺术学...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 农学
    • 3 篇 作物学

主题

  • 24 篇 face recognition
  • 24 篇 biometrics
  • 23 篇 face
  • 16 篇 databases
  • 16 篇 feature extracti...
  • 15 篇 robustness
  • 13 篇 iris recognition
  • 13 篇 training
  • 12 篇 pattern recognit...
  • 10 篇 lighting
  • 9 篇 national securit...
  • 9 篇 histograms
  • 8 篇 face detection
  • 7 篇 cameras
  • 7 篇 laboratories
  • 6 篇 image databases
  • 6 篇 image recognitio...
  • 6 篇 principal compon...
  • 5 篇 learning systems
  • 5 篇 sun

机构

  • 20 篇 center for biome...
  • 13 篇 center for biome...
  • 12 篇 center for biome...
  • 10 篇 center for biome...
  • 6 篇 center for biome...
  • 6 篇 university of ch...
  • 3 篇 china research a...
  • 3 篇 center of biomet...
  • 2 篇 college of engin...
  • 2 篇 center for biome...
  • 2 篇 fujian provincia...
  • 2 篇 center for biome...
  • 2 篇 institute of aut...
  • 2 篇 center for biome...
  • 2 篇 center of biomet...
  • 2 篇 school of electr...
  • 2 篇 center for biome...
  • 2 篇 biometrics and p...
  • 2 篇 college of infor...
  • 2 篇 the computer vis...

作者

  • 49 篇 stan z. li
  • 37 篇 zhen lei
  • 24 篇 dong yi
  • 18 篇 tieniu tan
  • 16 篇 li stan z.
  • 16 篇 lei zhen
  • 15 篇 zhenan sun
  • 15 篇 shengcai liao
  • 9 篇 junjie yan
  • 6 篇 sun zhenan
  • 6 篇 tan tieniu
  • 5 篇 zhu xiangyu
  • 4 篇 wan jun
  • 4 篇 longyin wen
  • 4 篇 ran he
  • 3 篇 zhaofeng he
  • 3 篇 yi dong
  • 3 篇 xiaotong yuan
  • 3 篇 damon l. woodard
  • 3 篇 xianchao qiu

语言

  • 103 篇 英文
  • 1 篇 中文
检索条件"机构=Biometrics and Pattern Recognition Laboratory"
104 条 记 录,以下是1-10 订阅
排序:
Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape
arXiv
收藏 引用
arXiv 2022年
作者: Zhu, Xiangyu Yu, Chang Huang, Di Lei, Zhen Wang, Hao Li, Stan Z. Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun Donglu Beijing100190 China Beijing100049 China Beijing Advanced Innovation Center for BDBC Beihang University Beijing China Beijing100049 China Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science & Innovation Chinese Academy of Sciences Hong Kong School of Engineering Westlake University Hangzhou China
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori. However, previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geo... 详细信息
来源: 评论
SADet: Learning an efficient and accurate pedestrian detector
arXiv
收藏 引用
arXiv 2020年
作者: Zhuang, Chubin Lei, Zhen Li, Stan Z. Center for Biometrics and Security Research and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
Although the anchor-based detectors have taken a big step forward in pedestrian detection, the overall performance of algorithm still needs further improvement for practical applications, e.g., a good trade-off betwee... 详细信息
来源: 评论
Weakly Aligned Feature Fusion for Multi-modal Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Lu Liu, Zhiyong Zhu, Xiangyu Song, Zhan Yang, Xu Lei, Zhen Qiao, Hong The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100086 China Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai200031 China The Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China The Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science & Innovation Chinese Academy of Sciences Hong Kong The Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen518055 China
To achieve accurate and robust object detection in the real-world scenario, various forms of images are incorporated, such as color, thermal, depth, etc. However, multi-modal data often suffer from the position shift ... 详细信息
来源: 评论
Auxiliary Demographic Information Assisted Age Estimation With Cascaded Structure
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2018年 第9期48卷 2531-2541页
作者: Wan, Jun Tan, Zichang Lei, Zhen Guo, Guodong Li, Stan Z. Center for Biometrics and Security Research and the National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China Lane Department of Computer Science and Electrical Engineering West Virginia University Morgantown WV USA
Owing to the variations including both intrinsic and extrinsic factors, age estimation remains a challenging problem. In this paper, five cascaded structure frameworks are proposed for age estimation based on convolut... 详细信息
来源: 评论
AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2021年
作者: Roy, Swalpa Kumar Paoletti, Mercedes E. Haut, Juan M. Dubey, Shiv Ram Kar, Purbayan Plaza, Antonio Chaudhuri, Bidyut B. The Computer Science and Engineering Alipurduar Government Engineering and Management College 736206 India The Hyperspectral Computing Laboratory Department of Technology of Computers and Communications University of Extremadura Cáceres10003 Spain The Computer Vision and Biometrics Lab Indian Institute of Information Technology Prayagraj Uttar Pradesh Allahabad211015 India The Media Analysis Group Sony Research India Private Limited Karnataka Bangalore560103 India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional neural networks (CNNs) are trained using stochastic gradient descent (SGD)-based optimizers. Recently, the adaptive moment estimation (Adam) optimizer has become very popular due to its adaptive momentum... 详细信息
来源: 评论
Domain adaptive person re-identification via camera style generation and label propagation
arXiv
收藏 引用
arXiv 2019年
作者: Ren, Chuan-Xian Liang, Bo-Hua Lei, Zhen School of Mathematics Sun Yat-Sen University Guangzhou510275 China Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190
Unsupervised domain adaptation in person reidentification resorts to labeled source data to promote the model training on target domain, facing the dilemmas caused by large domain shift and large camera variations. Th... 详细信息
来源: 评论
DEEP BACKGROUND SUBTRACTION WITH GUIDED LEARNING
DEEP BACKGROUND SUBTRACTION WITH GUIDED LEARNING
收藏 引用
IEEE International Conference on Multimedia and Expo
作者: Xuezhi Liang Shengcai Liao Xiaobo Wang Wei Liu Yuxuan Chen Stan Z. Li University of Chinese Academy of Sciences Beijing China Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China
Recently, convolutional neural networks (CNNs) have been applied in background subtraction (change detection) and gained notable improvements. Two typical methods have been proposed. The first one learns a specific CN... 详细信息
来源: 评论
Large-scale bisample learning on ID versus spot face recognition
arXiv
收藏 引用
arXiv 2018年
作者: Zhu, Xiangyu Liu, Hao Lei, Zhen Shi, Hailin Yang, Fan Yi, Dong Qi, Guojun Li, Stan Z. Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences College of Software Beihang University DAMO Academy Alibaba Group HUAWEI Cloud United States
In real-world face recognition applications, there is a tremendous amount of data with two images for each person. One is an ID photo for face enrollment, and the other is a probe photo captured on spot. Most existing... 详细信息
来源: 评论
diffGrad: An optimization method for convolutional neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Dubey, Shiv Ram Chakraborty, Soumendu Roy, Swalpa Kumar Mukherjee, Snehasis Singh, Satish Kumar Chaudhuri, Bidyut Baran The Computer Vision Group Indian Institute of Information Technology Sri City Andhra Pradesh Chittoor517646 India The Indian Institute of Information Technology Uttar Pradesh Lucknow India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India Techno India University Sector V Salt Lake City Kolkata700091 India The Computer Vision and Biometrics Laboratory Indian Institute of Information Technology Allahabad211015 India
Stochastic Gradient Decent (SGD) is one of the core techniques behind the success of deep neural networks. The gradient provides information on the direction in which a function has the steepest rate of change. The ma... 详细信息
来源: 评论
Improving Tiny Vehicle Detection in Complex Scenes
Improving Tiny Vehicle Detection in Complex Scenes
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Wei Liu Shengcai Liao Weidong Hu Xuezhi Liang Yan Zhang Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China College of Electronic Science National University of Defense Technology Changsha China
Vehicle detection is still a challenge in complex traffic scenes, especially for vehicles of tiny scales. Though RCNN based two-stage detectors have demonstrated considerably good performance, less attention has been ... 详细信息
来源: 评论