咨询与建议

限定检索结果

文献类型

  • 85 篇 会议
  • 17 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 22 篇 机械工程
    • 17 篇 计算机科学与技术...
    • 16 篇 生物工程
    • 13 篇 软件工程
    • 10 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 信息与通信工程
    • 5 篇 仪器科学与技术
    • 4 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 13 篇 生物学
    • 11 篇 数学
    • 4 篇 系统科学
    • 4 篇 统计学(可授理学、...
    • 2 篇 物理学
  • 7 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 5 篇 艺术学
    • 5 篇 设计学(可授艺术学...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 农学
    • 3 篇 作物学

主题

  • 24 篇 face recognition
  • 24 篇 biometrics
  • 23 篇 face
  • 16 篇 databases
  • 16 篇 feature extracti...
  • 15 篇 robustness
  • 13 篇 iris recognition
  • 13 篇 training
  • 12 篇 pattern recognit...
  • 10 篇 lighting
  • 9 篇 national securit...
  • 9 篇 histograms
  • 8 篇 face detection
  • 7 篇 cameras
  • 7 篇 laboratories
  • 6 篇 image databases
  • 6 篇 image recognitio...
  • 6 篇 principal compon...
  • 5 篇 learning systems
  • 5 篇 sun

机构

  • 20 篇 center for biome...
  • 13 篇 center for biome...
  • 12 篇 center for biome...
  • 10 篇 center for biome...
  • 6 篇 center for biome...
  • 6 篇 university of ch...
  • 3 篇 china research a...
  • 3 篇 center of biomet...
  • 2 篇 college of engin...
  • 2 篇 center for biome...
  • 2 篇 fujian provincia...
  • 2 篇 center for biome...
  • 2 篇 institute of aut...
  • 2 篇 center for biome...
  • 2 篇 center of biomet...
  • 2 篇 school of electr...
  • 2 篇 center for biome...
  • 2 篇 biometrics and p...
  • 2 篇 college of infor...
  • 2 篇 the computer vis...

作者

  • 49 篇 stan z. li
  • 37 篇 zhen lei
  • 24 篇 dong yi
  • 18 篇 tieniu tan
  • 16 篇 li stan z.
  • 16 篇 lei zhen
  • 15 篇 zhenan sun
  • 15 篇 shengcai liao
  • 9 篇 junjie yan
  • 6 篇 sun zhenan
  • 6 篇 tan tieniu
  • 5 篇 zhu xiangyu
  • 4 篇 wan jun
  • 4 篇 longyin wen
  • 4 篇 ran he
  • 3 篇 zhaofeng he
  • 3 篇 yi dong
  • 3 篇 xiaotong yuan
  • 3 篇 damon l. woodard
  • 3 篇 xianchao qiu

语言

  • 103 篇 英文
  • 1 篇 中文
检索条件"机构=Biometrics and Pattern Recognition Laboratory"
104 条 记 录,以下是31-40 订阅
排序:
Robust 3D Morphable Model Fitting by Sparse SIFT Flow
Robust 3D Morphable Model Fitting by Sparse SIFT Flow
收藏 引用
International Conference on pattern recognition
作者: Xiangyu Zhu Dong Yi Zhen Lei Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Chinese Academy of Sciences Beijing China
3D Morph able Model (3DMM) has been widely used in face analysis for many years. The most challenging part of 3DMM is to find the correspondences between 3D points and 2D pixels. Existing methods only use key points, ... 详细信息
来源: 评论
Multi-camera Trajectory Mining: Database and Evaluation
Multi-camera Trajectory Mining: Database and Evaluation
收藏 引用
International Conference on pattern recognition
作者: Yang Hu Shengcai Liao Dong Yi Zhen Lei Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Chinese Academy of Sciences (CASIA) Beijing China Institute of Automation Chinese Academy of Sciences Beijing Beijing CN
In recent years, large-scale video search and mining has been an active research area. Exploring the trajectory of pedestrian of interest in non-overlapping multi-camera network, namely the trajectory mining, is very ... 详细信息
来源: 评论
A Probabilistic Framework for Multitarget Tracking with Mutual Occlusions
A Probabilistic Framework for Multitarget Tracking with Mutu...
收藏 引用
IEEE Conference on Computer Vision and pattern recognition
作者: Menglong Yang Yiguang Liu Longyin Wen Zhisheng You Stan Z. Li Key Laboratory of Fundamental Synthetic Vision Graphics and Image for National Defense School of Aeronautics and Astronautics & Computer Science Sichuan University Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Mutual occlusions among targets can cause track loss or target position deviation, because the observation likelihood of an occluded target may vanish even when we have the estimated location of the target. This paper... 详细信息
来源: 评论
Accelerating face recognition for large data applications in visual internet of things
收藏 引用
Information Technology Journal 2013年 第6期12卷 1143-1151页
作者: Jiang, Zhuoxuan Lin, Yaping Li, Stan Z. School of Information Science and Engineering Hunan University No. 252 Lushan South Road Changsha 410082 China Center for Biometrics and Security Research National Laboratory of Pattern Recognition Chinese Academy of Sciences 95 Zhongguancun Donglu Beijing 100080 China
This study described a face recognition system for large scale data applications in the framework of Visual Internet of Things (VToT). The main issue here was the speed in large face matching. In order to solve this p... 详细信息
来源: 评论
Exploring Structural Information and Fusing Multiple Features for Person Re-identification
Exploring Structural Information and Fusing Multiple Feature...
收藏 引用
IEEE Conference on Computer Vision and pattern recognition Workshops
作者: Yang Hu Shengcai Liao Zhen Lei Dong Yi Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Recently, methods with learning procedure have been widely used to solve person re-identification (re-id) problem. However, most existing databases for re-id are small-scale, therefore, over-fitting is likely to occur... 详细信息
来源: 评论
Face Liveness Detection with Component Dependent Descriptor
Face Liveness Detection with Component Dependent Descriptor
收藏 引用
IAPR International Conference on biometrics
作者: Jianwei Yang Zhen Lei Shengcai Liao Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Spoofing attacks mainly include printing artifacts, electronic screens and ultra-realistic face masks or models. In this paper, we propose a component-based face coding approach for liveness detection. The proposed me... 详细信息
来源: 评论
Real-time High Performance Deformable Model for Face Detection in the Wild
Real-time High Performance Deformable Model for Face Detecti...
收藏 引用
IAPR International Conference on biometrics
作者: Junjie Yan Xucong Zhang Zhen Lei Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
We present an effective deformable part model for face detection in the wild. Compared with previous systems on face detection, there are mainly three contributions. The first is an efficient method for calculating hi... 详细信息
来源: 评论
Face Liveness Detection Using 3D Structure Recovered from a Single Camera
Face Liveness Detection Using 3D Structure Recovered from a ...
收藏 引用
IAPR International Conference on biometrics
作者: Tao Wang Jianwei Yang Zhen Lei Shengcai Liao Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Face recognition, which is security-critical, has been widely deployed in our daily life. However, traditional face recognition technologies in practice can be spoofed easily, for example, by using a simple printed ph... 详细信息
来源: 评论
Robust Multi-Resolution Pedestrian Detection in Traffic Scenes
Robust Multi-Resolution Pedestrian Detection in Traffic Scen...
收藏 引用
IEEE Conference on Computer Vision and pattern recognition
作者: Junjie Yan Xucong Zhang Zhen Lei Shengcai Liao Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
The serious performance decline with decreasing resolution is the major bottleneck for current pedestrian detection techniques [14, 23]. In this paper, we take pedestrian detection in different resolutions as differen... 详细信息
来源: 评论
Towards Pose Robust Face recognition
Towards Pose Robust Face Recognition
收藏 引用
IEEE Conference on Computer Vision and pattern recognition
作者: Dong Yi Zhen Lei Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Most existing pose robust methods are too computational complex to meet practical applications and their performance under unconstrained environments are rarely evaluated. In this paper, we propose a novel method for ... 详细信息
来源: 评论