咨询与建议

限定检索结果

文献类型

  • 85 篇 会议
  • 17 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 22 篇 机械工程
    • 17 篇 计算机科学与技术...
    • 16 篇 生物工程
    • 13 篇 软件工程
    • 10 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 信息与通信工程
    • 5 篇 仪器科学与技术
    • 4 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 13 篇 生物学
    • 11 篇 数学
    • 4 篇 系统科学
    • 4 篇 统计学(可授理学、...
    • 2 篇 物理学
  • 7 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 5 篇 艺术学
    • 5 篇 设计学(可授艺术学...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 农学
    • 3 篇 作物学

主题

  • 24 篇 face recognition
  • 24 篇 biometrics
  • 23 篇 face
  • 16 篇 databases
  • 16 篇 feature extracti...
  • 15 篇 robustness
  • 13 篇 iris recognition
  • 13 篇 training
  • 12 篇 pattern recognit...
  • 10 篇 lighting
  • 9 篇 national securit...
  • 9 篇 histograms
  • 8 篇 face detection
  • 7 篇 cameras
  • 7 篇 laboratories
  • 6 篇 image databases
  • 6 篇 image recognitio...
  • 6 篇 principal compon...
  • 5 篇 learning systems
  • 5 篇 sun

机构

  • 20 篇 center for biome...
  • 13 篇 center for biome...
  • 12 篇 center for biome...
  • 10 篇 center for biome...
  • 6 篇 center for biome...
  • 6 篇 university of ch...
  • 3 篇 china research a...
  • 3 篇 center of biomet...
  • 2 篇 college of engin...
  • 2 篇 center for biome...
  • 2 篇 fujian provincia...
  • 2 篇 center for biome...
  • 2 篇 institute of aut...
  • 2 篇 center for biome...
  • 2 篇 center of biomet...
  • 2 篇 school of electr...
  • 2 篇 center for biome...
  • 2 篇 biometrics and p...
  • 2 篇 college of infor...
  • 2 篇 the computer vis...

作者

  • 49 篇 stan z. li
  • 37 篇 zhen lei
  • 24 篇 dong yi
  • 18 篇 tieniu tan
  • 16 篇 li stan z.
  • 16 篇 lei zhen
  • 15 篇 zhenan sun
  • 15 篇 shengcai liao
  • 9 篇 junjie yan
  • 6 篇 sun zhenan
  • 6 篇 tan tieniu
  • 5 篇 zhu xiangyu
  • 4 篇 wan jun
  • 4 篇 longyin wen
  • 4 篇 ran he
  • 3 篇 zhaofeng he
  • 3 篇 yi dong
  • 3 篇 xiaotong yuan
  • 3 篇 damon l. woodard
  • 3 篇 xianchao qiu

语言

  • 103 篇 英文
  • 1 篇 中文
检索条件"机构=Biometrics and Pattern Recognition Laboratory"
104 条 记 录,以下是81-90 订阅
排序:
Boosting Ordinal Features for Accurate and Fast Iris recognition
Boosting Ordinal Features for Accurate and Fast Iris Recogni...
收藏 引用
26th IEEE Conference on Computer Vision and pattern recognition (CVPR 2008), vol.8
作者: Zhaofeng He Zhenan Sun Tieniu Tan Xianchao Qiu Cheng Zhong Wenbo Dong Center for Biometrics and Security Research National Laboratory of Pattern RecognitionNational Laboratory of Pattern Recognition Chinese Academy and Sciences Beijing China
In this paper, we present a novel iris recognition method based on learned ordinal features. Firstly, taking full advantages of the properties of iris textures, a new iris representation method based on regional ordin... 详细信息
来源: 评论
Combine hierarchical appearance statistics for accurate palmprint recognition
Combine hierarchical appearance statistics for accurate palm...
收藏 引用
International Conference on pattern recognition
作者: Yufei Han Zhenan Sun Tieniu Tan Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences
Palmprint recognition is an active member of biometrics in recent years. State-of-the-art algorithms of palmprint recognition describe appearances of palmprints efficiently through local texture analysis. Following th... 详细信息
来源: 评论
Counterfeit iris detection based on texture analysis
Counterfeit iris detection based on texture analysis
收藏 引用
International Conference on pattern recognition
作者: Zhuoshi Wei Xianchao Qiu Zhenan Sun Tieniu Tan Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
This paper addresses the issue of counterfeit iris detection, which is a liveness detection problem in biometrics. Fake iris mentioned here refers to iris wearing color contact lens with textures printed onto them. We... 详细信息
来源: 评论
Face Shape Recovery from a Single Image Using CCA Mapping between Tensor Spaces
Face Shape Recovery from a Single Image Using CCA Mapping be...
收藏 引用
26th IEEE Conference on Computer Vision and pattern recognition (CVPR 2008), vol.1
作者: Zhen Lei Qinqun Bai Ran He Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
In this paper, we propose a new approach for face shape recovery from a single image. A single near infrared (NIR) image is used as the input, and a mapping from the NIR tensor space to 3D tensor space, learned by usi... 详细信息
来源: 评论
A hierarchical model for the evaluation of biometric sample quality
A hierarchical model for the evaluation of biometric sample ...
收藏 引用
International Conference on pattern recognition
作者: Qian He Zhenan Sun Tieniu Tan Yong Zou Center for Biometrics Authentication and Testing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
The evaluation of biometric sample quality is of great importance in the evaluation of biometric algorithms. In this paper, we propose a novel hierarchical model to compute the sample quality at three levels. This mod... 详细信息
来源: 评论
Synthesis of large realistic iris databases using patch-based sampling
Synthesis of large realistic iris databases using patch-base...
收藏 引用
International Conference on pattern recognition
作者: Zhuoshi Wei Tieniu Tan Zhenan Sun Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
This paper presents a framework to synthesize large realistic iris databases, providing an alternative to iris database collection. Firstly, iris patch is used as a basic element to characterize visual primitive of ir... 详细信息
来源: 评论
Normalized LDA for semi-supervised learning
Normalized LDA for semi-supervised learning
收藏 引用
International Conference on Automatic Face and Gesture recognition
作者: Bin Fan Zhen Lei Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
Linear Discriminant Analysis (LDA) has been a popular method for feature extracting and face recognition. As a supervised method, it requires manually labeled samples for training, while making labeled samples is a ti... 详细信息
来源: 评论
Enhanced usability of iris recognition via efficient user interface and iris image restoration
Enhanced usability of iris recognition via efficient user in...
收藏 引用
IEEE International Conference on Image Processing
作者: Zhaofeng He Zhenan Sun Tieniu Tan Xianchao Qiu Center for Biometrics and Security Research National Laboratory of Pattern RecognitionInstitute of Automation Chinese Academy and Sciences Beijing China
In this paper, we investigate the possibility of enhancing the usability of iris recognition via exploration of the specular spots in iris images. Firstly, the spatial configuration of the specular spots in iris image... 详细信息
来源: 评论
Online Adaptive Fast Multipose Face Tracking Based on Visual Cue Selection
收藏 引用
自动化学报 2008年 第1期34卷 14-20页
作者: YANG Tao LI Zi-Qing PAN Quan LI Jing ZHAO Chun-Hui CHENG Yong-Mei College of Automation Northwestern Polytechnical University Xi'an 710072 P.R. China Center for Biometrics and Security Research and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing 100080 P. R. China
This paper presents a system that is able to reliably track multiple faces under varying poses(tilted and rotated)in real *** system consists of two interactive *** first module performs the detection of the face that... 详细信息
来源: 评论
How to make iris recognition easier?
How to make iris recognition easier?
收藏 引用
International Conference on pattern recognition
作者: Wenbo Dong Zhenan Sun Tieniu Tan Center for Biometrics and Security Research (CBSR) & National Laboratory of Pattern Recognition (NLPR) Institute of Automation (CASIA) Chinese Academy and Sciences
Iris recognition is regarded as the most reliable biometrics and has been widely applied in both public and personal security areas. However users have to highly cooperate with the iris cameras to make his iris images... 详细信息
来源: 评论