咨询与建议

限定检索结果

文献类型

  • 310 篇 期刊文献
  • 227 篇 会议
  • 1 册 图书

馆藏范围

  • 538 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 364 篇 工学
    • 262 篇 计算机科学与技术...
    • 216 篇 软件工程
    • 64 篇 信息与通信工程
    • 53 篇 控制科学与工程
    • 45 篇 生物工程
    • 44 篇 电气工程
    • 33 篇 生物医学工程(可授...
    • 26 篇 机械工程
    • 25 篇 光学工程
    • 25 篇 电子科学与技术(可...
    • 15 篇 动力工程及工程热...
    • 15 篇 化学工程与技术
    • 13 篇 材料科学与工程(可...
    • 12 篇 交通运输工程
    • 11 篇 仪器科学与技术
    • 10 篇 土木工程
  • 175 篇 理学
    • 72 篇 数学
    • 54 篇 生物学
    • 53 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 23 篇 化学
    • 11 篇 系统科学
  • 100 篇 管理学
    • 58 篇 管理科学与工程(可...
    • 47 篇 图书情报与档案管...
    • 20 篇 工商管理
  • 38 篇 医学
    • 31 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 26 篇 法学
    • 18 篇 社会学
  • 5 篇 农学
  • 4 篇 经济学
  • 4 篇 教育学
  • 3 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 deep learning
  • 18 篇 graph neural net...
  • 16 篇 machine learning
  • 16 篇 blockchain
  • 15 篇 federated learni...
  • 15 篇 privacy
  • 14 篇 semantics
  • 14 篇 training
  • 12 篇 computational mo...
  • 12 篇 accuracy
  • 11 篇 feature extracti...
  • 10 篇 security
  • 9 篇 data privacy
  • 8 篇 object detection
  • 8 篇 scalability
  • 8 篇 deep neural netw...
  • 8 篇 contrastive lear...
  • 8 篇 blockchains
  • 8 篇 adaptation model...
  • 7 篇 recommender syst...

机构

  • 30 篇 key lab of educa...
  • 29 篇 school of comput...
  • 18 篇 guangxi key lab ...
  • 16 篇 guangxi key lab ...
  • 15 篇 school of comput...
  • 12 篇 school of cyber ...
  • 12 篇 institute of art...
  • 11 篇 institute of sci...
  • 11 篇 guangxi normal u...
  • 10 篇 college of compu...
  • 10 篇 zhangjiang fudan...
  • 10 篇 school of comput...
  • 9 篇 zju-hangzhou glo...
  • 9 篇 moe frontiers ce...
  • 9 篇 key lab of educa...
  • 9 篇 zhejiang lab
  • 8 篇 ministry of educ...
  • 8 篇 cas key laborato...
  • 8 篇 school of softwa...
  • 8 篇 deqing alpha inn...

作者

  • 16 篇 fu xingcheng
  • 16 篇 li xianxian
  • 15 篇 li jianxin
  • 15 篇 sun qingyun
  • 11 篇 luo xudong
  • 11 篇 yuan haonan
  • 9 篇 xianxian li
  • 9 篇 gao yisen
  • 9 篇 muhammad adnan k...
  • 8 篇 hao zhou
  • 8 篇 jinyan wang
  • 8 篇 shen yulong
  • 8 篇 wang jinyan
  • 8 篇 dong xuewen
  • 7 篇 jiang yu-gang
  • 7 篇 sagheer abbas
  • 7 篇 qu qiang
  • 7 篇 chunhe xia
  • 7 篇 tianbo wang
  • 6 篇 xian youquan

语言

  • 459 篇 英文
  • 73 篇 其他
  • 10 篇 中文
检索条件"机构=Blockchain Innovation Lab/School of Computer Science and Technology"
538 条 记 录,以下是81-90 订阅
排序:
Dynamic Graph Information Bottleneck
arXiv
收藏 引用
arXiv 2024年
作者: Yuan, Haonan Sun, Qingyun Fu, Xingcheng Ji, Cheng Li, Jianxin School of Computer Science and Engineering Beihang University Beijing China Key Lab of Education Blockchain and Intelligent Technology Guangxi Normal University Guangxi Guilin China
Dynamic Graphs widely exist in the real world, which carry complicated spatial and temporal feature patterns, challenging their representation learning. Dynamic Graph Neural Networks (DGNNs) have shown impressive pred... 详细信息
来源: 评论
HiCoCS: High Concurrency Cross-Sharding on Permissioned blockchains
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Lingxiao Dong, Xuewen Wan, Zhiguo Lu, Di Zhang, Yushu Shen, Yulong School of Computer Science and Technology Xidian University Engineering Research Center of Blockchain Technology Application and Evaluation Ministry of Education Shaanxi Key Laboratory of Blockchain and Secure Computing Xi’an710071 China Zhejiang Lab Zhejiang Hangzhou311121 China School of Computer Science and Technology Xidian University Shaanxi Key Laboratory of Network and System Security Xi’an710071 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210016 China
As the foundation of the Web3 trust system, blockchain technology faces increasing demands for scalability. Sharding emerges as a promising solution, but it struggles to handle highly concurrent cross-shard transactio... 详细信息
来源: 评论
Multimodal Emotion Recognition by Fusing Video Semantic in MOOC Learning Scenarios
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Yuan Tao, Xiaomei Ai, Hanxu Chen, Tao Gan, Yanling Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Key Lab of Multi-Source Information Mining and Security China School of Computer Science and Engineering Guangxi Normal University China School of Computer Science University of Birmingham United Kingdom
In the Massive Open Online Courses (MOOC) learning scenario, the semantic information of instructional videos has a crucial impact on learners' emotional state. Learners mainly acquire knowledge by watching instru... 详细信息
来源: 评论
A Privacy-Preserving and Efficient Data Sharing Scheme Based on blockchain in IIoT
A Privacy-Preserving and Efficient Data Sharing Scheme Based...
收藏 引用
International Symposium on Parallel and Distributed Processing with Applications, ISPA
作者: Hongyan Peng Yipeng Yang Dongcheng Li Peng Wang Peng Liu Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Normal University China School of Computer Science and Engineering Guangxi Normal University China
In the industrial Internet of Things (IIoT) scenarios, data sharing can promote mutual collaboration among production parties to improve productivity and optimise resource allocation, but data sharing in industrial sc... 详细信息
来源: 评论
Using Problem Frames Approach for Key Information Extraction from Natural Language Requirements  23
Using Problem Frames Approach for Key Information Extraction...
收藏 引用
23rd IEEE International Conference on Software Quality, Reliability, and Security Companion, QRS-C 2023
作者: Tang, Shangzhi Chen, Xuan Xiao, Hongbin Wei, Jiahao Li, Zhi School of Computer Science and Engineering Guangxi Normal University Guilin China Guangxi Normal University Key Lab of Education Blockchain Intelligent Technology Ministry of Education Guilin China Guangxi Normal University Guangxi Key Laboratory of Multi-source Information Mining and Security Guilin China
The correct capturing and understanding of requirements play a crucial role in the software development process. However, the ambiguity in requirements described using natural language (NL) poses a challenge. Existing... 详细信息
来源: 评论
ScanFormer: Referring Expression Comprehension by Iteratively Scanning
ScanFormer: Referring Expression Comprehension by Iterativel...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Wei Su Peihan Miao Huanzhang Dou Xi Li College of Computer Science and Technology Zhejiang University School of Software Technology Zhejiang University Zhejiang-Singapore Innovation and Al Joint Research Lab
Referring Expression Comprehension (REC) aims to localize the target objects specified by free-form natural language descriptions in images. While state-of-the-art methods achieve impressive performance, they perform ... 详细信息
来源: 评论
Joint Optimization of Model Deployment for Freshness-Sensitive Task Assignment in Edge Intelligence
Joint Optimization of Model Deployment for Freshness-Sensiti...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE computer and Communications Societies
作者: Haolin Liu Sirui Liu Saiqin Long Qingyong Deng Zhetao Li School of Computer Science Xiangtan University Xiangtan China College of Information Science and Technology Jinan University Guangzhou China Key Lab of Education Blockchain and Intelligent Technology Guangxi Normal University Guilin China
Edge Intelligence aims to push deep learning (DL) services to network edge to reduce response time and protect privacy. In implementations, proximity deployment of DL models and timely updates can improve the quality ... 详细信息
来源: 评论
Adaptive Backdoor Attacks with Reasonable Constraints on Graph Neural Networks
收藏 引用
IEEE Transactions on Dependable and Secure Computing 2025年
作者: Dong, Xuewen Li, Jiachen Li, Shujun You, Zhichao Qu, Qiang Kholodov, Yaroslav Shen, Yulong The School of Computer Science and Technology Xidian University The Engineering Research Center of Blockchain Technology Application and Evaluation Ministry of Education China The Shaanxi Key Laboratory of Blockchain and Secure Computing Xi’an710071 China The School of Computing Kent Interdisciplinary Research Centre in Cyber Security University of Kent CanterburyCT2 7NF United Kingdom Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The Intelligent Transportation Systems Lab Innopolis University Innopolis Russia The School of Computer Science and Technology Xidian University China
Recent studies show that graph neural networks (GNNs) are vulnerable to backdoor attacks. Existing backdoor attacks against GNNs use fixed-pattern triggers and lack reasonable trigger constraints, overlooking individu... 详细信息
来源: 评论
Enhancing Scalability: A Complete Tree Sharding Architecture Towards IoT  18th
Enhancing Scalability: A Complete Tree Sharding Architecture...
收藏 引用
18th International Conference on Wireless Artificial Intelligent Computing Systems and Applications, WASA 2024
作者: Zhang, Luyi Wang, Yujue Ding, Yong Liang, Hai Yang, Changsong Zheng, Haibin Guangxi Key Laboratory of Cryptography and Information Security School of Computer Science and Information Security Guilin University of Electronic Technology Guilin541004 China Hangzhou Innovation Institute of Beihang University Hangzhou310052 China Institute of Cyberspace Technology HKCT Institute for Higher Education Hong Kong Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies Shenzhen518055 China Guangxi Engineering Research Center of Industrial Internet Security and Blockchain Guilin University of Electronic Technology Guilin541004 China
With the rapid proliferation of integration of blockchain and IoT, traditional centralized architectures and single-node processing have been effectively solved, but scalability of blockchain have become inadequate to... 详细信息
来源: 评论
Environment-aware dynamic graph learning for out-of-distribution generalization  23
Environment-aware dynamic graph learning for out-of-distribu...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Haonan Yuan Qingyun Sun Xingcheng Fu Ziwei Zhang Cheng Ji Hao Peng Jianxin Li Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University and School of Computer Science and Engineering Beihang University Key Lab of Education Blockchain and Intelligent Technology Guangxi Normal University Department of Computer Science and Technology Tsinghua University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
Dynamic graph neural networks (DGNNs) are increasingly pervasive in exploiting spatio-temporal patterns on dynamic graphs. However, existing works fail to generalize under distribution shifts, which are common in real...
来源: 评论