咨询与建议

限定检索结果

文献类型

  • 319 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 491 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 340 篇 工学
    • 254 篇 计算机科学与技术...
    • 225 篇 软件工程
    • 63 篇 信息与通信工程
    • 37 篇 生物工程
    • 26 篇 电气工程
    • 26 篇 控制科学与工程
    • 23 篇 电子科学与技术(可...
    • 22 篇 光学工程
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 7 篇 环境科学与工程(可...
  • 177 篇 理学
    • 90 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 9 篇 系统科学
  • 135 篇 管理学
    • 105 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 15 篇 医学
    • 13 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 11 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 31 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 generative adver...
  • 12 篇 training
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 reinforcement le...
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 148 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 27 篇 cas key lab of n...
  • 22 篇 university of am...
  • 21 篇 cas key lab of n...
  • 21 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 9 篇 key lab. of inte...
  • 9 篇 school of comput...
  • 9 篇 haihe lab of ita...
  • 9 篇 zhejiang lab
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...

作者

  • 176 篇 cheng xueqi
  • 147 篇 guo jiafeng
  • 56 篇 zhang ruqing
  • 54 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 26 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 cao qi
  • 21 篇 de rijke maarten
  • 19 篇 xu jun
  • 18 篇 chen wei
  • 17 篇 xueqi cheng
  • 15 篇 li zixuan
  • 15 篇 guan saiping
  • 13 篇 sun xiaoming
  • 13 篇 bai long
  • 10 篇 xiaolong jin
  • 10 篇 huang qingming

语言

  • 452 篇 英文
  • 36 篇 其他
  • 3 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology"
491 条 记 录,以下是171-180 订阅
排序:
ReCoSa: Detecting the relevant contexts with self-attention for multi-turn dialogue generation
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Hainan Y., Lan L., Pang J., Guo X., Cheng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China
In multi-turn dialogue generation, response is usually related with only a few contexts. Therefore, an ideal model should be able to detect these relevant contexts and produce a suitable response accordingly. However,... 详细信息
来源: 评论
GERE: Generative Evidence Retrieval for Fact Verification
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Jiangui Zhang, Ruqing Guo, Jiafeng Fan, Yixing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China
Fact verification (FV) is a challenging task which aims to verify a claim using multiple evidential sentences from trustworthy corpora, e.g., Wikipedia. Most existing approaches follow a three-step pipeline framework,... 详细信息
来源: 评论
Influence maximization with ε-almost submodular threshold functions  17
Influence maximization with ε-almost submodular threshold f...
收藏 引用
Proceedings of the 31st International Conference on Neural Information Processing Systems
作者: Qiang Li Wei Chen Xiaoming Sun Jialin Zhang CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Microsoft Research
Influence maximization is the problem of selecting k nodes in a social network to maximize their influence spread. The problem has been extensively studied but most works focus on the submodular influence diffusion mo...
来源: 评论
CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Jiangui Zhang, Ruqing Guo, Jiafeng Liu, Yiqun Fan, Yixing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China BNRist DCST Tsinghua University Beijing China
Knowledge-intensive language tasks (KILT) usually require a large body of information to provide correct answers. A popular paradigm to solve this problem is to combine a search system with a machine reader, where the... 详细信息
来源: 评论
Match-Prompt: Improving Multi-task Generalization Ability for Neural Text Matching via Prompt Learning
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Shicheng Pang, Liang Shen, Huawei Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China
Text matching is a fundamental technique in both information retrieval and natural language processing. Text matching tasks share the same paradigm that determines the relationship between two given texts. The relatio... 详细信息
来源: 评论
HoloScope: Topology-and-Spike Aware Fraud Detection
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Shenghua Hooi, Bryan Faloutsos, Christos CAS Key Laboratory of Network Data Science & Technology Institute of Computing Technology Chinese Academy of Sciences Carnegie Mellon University
As online fraudsters invest more resources, including purchasing large pools of fake user accounts and dedicated IPs, fraudulent attacks become less obvious and their detection becomes increasingly challenging. Existi... 详细信息
来源: 评论
Marked temporal dynamics modeling based on recurrent neural network
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Yongqing Liu, Shenghua Shen, Huawei Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
We are now witnessing the increasing availability of event stream data, i.e., a sequence of events with each event typically being denoted by the time it occurs and its mark information (e.g., event type). A fundament... 详细信息
来源: 评论
Algorithms of Time Series network: Approaches Reproduction and networks Topology  9
Algorithms of Time Series Network: Approaches Reproduction a...
收藏 引用
9th International Conference on Fuzzy Systems and data Mining, FSDM 2023
作者: Wang, Li-Na Cheng, Yuan-Yuan Tan, Gui-Min Science College Inner Mongolia University of Technology Hohhot010051 China Inner Mongolian Key Lab. of Statistical Analysis Theory for Life Data and Neural Network Modeling Hohhot010051 China
network analysis methods of time series provide a new analytical framework on describing complex behaviors using sample data. Reproducibility is one of the important principles in scientific research. This work focuse... 详细信息
来源: 评论
Temporal knowledge graph reasoning based on evolutional representation learning
arXiv
收藏 引用
arXiv 2021年
作者: Li, Zixuan Jin, Xiaolong Li, Wei Guan, Saiping Guo, Jiafeng Shen, Huawei Wang, Yuanzhuo Cheng, Xueqi School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology ICT CAS Beijing China Baidu Inc. Beijing China
Knowledge Graph (KG) reasoning that predicts missing facts for incomplete KGs has been widely explored. However, reasoning over Temporal KG (TKG) that predicts facts in the future is still far from resolved. The key t... 详细信息
来源: 评论
Beyond low-frequency information in graph convolutional networks
arXiv
收藏 引用
arXiv 2021年
作者: Bo, Deyu Wang, Xiao Shi, Chuan Shen, Huawei Beijing University of Posts and Telecommunications China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental questi... 详细信息
来源: 评论