咨询与建议

限定检索结果

文献类型

  • 319 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 491 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 340 篇 工学
    • 254 篇 计算机科学与技术...
    • 225 篇 软件工程
    • 63 篇 信息与通信工程
    • 37 篇 生物工程
    • 26 篇 电气工程
    • 26 篇 控制科学与工程
    • 23 篇 电子科学与技术(可...
    • 22 篇 光学工程
    • 16 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 7 篇 环境科学与工程(可...
  • 177 篇 理学
    • 90 篇 数学
    • 60 篇 物理学
    • 41 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 地球物理学
    • 9 篇 系统科学
  • 135 篇 管理学
    • 105 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 15 篇 医学
    • 13 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 11 篇 法学
    • 10 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 4 篇 文学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 31 篇 semantics
  • 16 篇 deep learning
  • 13 篇 information retr...
  • 12 篇 generative adver...
  • 12 篇 training
  • 11 篇 graph neural net...
  • 9 篇 convolution
  • 9 篇 knowledge graph
  • 9 篇 forecasting
  • 8 篇 feature extracti...
  • 7 篇 learning systems
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 image segmentati...
  • 6 篇 computational li...
  • 6 篇 natural language...
  • 5 篇 surveys
  • 5 篇 reinforcement le...
  • 5 篇 big data
  • 5 篇 prototypes

机构

  • 148 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 27 篇 cas key lab of n...
  • 22 篇 university of am...
  • 21 篇 cas key lab of n...
  • 21 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 baidu inc
  • 10 篇 cas key laborato...
  • 10 篇 peng cheng labor...
  • 9 篇 key lab. of inte...
  • 9 篇 school of comput...
  • 9 篇 haihe lab of ita...
  • 9 篇 zhejiang lab
  • 9 篇 institute of com...
  • 9 篇 tianjin key labo...
  • 8 篇 linke lab school...
  • 7 篇 cas key laborato...

作者

  • 176 篇 cheng xueqi
  • 147 篇 guo jiafeng
  • 56 篇 zhang ruqing
  • 54 篇 fan yixing
  • 49 篇 lan yanyan
  • 43 篇 shen huawei
  • 30 篇 pang liang
  • 26 篇 jin xiaolong
  • 26 篇 bi keping
  • 22 篇 cao qi
  • 21 篇 de rijke maarten
  • 19 篇 xu jun
  • 18 篇 chen wei
  • 17 篇 xueqi cheng
  • 15 篇 li zixuan
  • 15 篇 guan saiping
  • 13 篇 sun xiaoming
  • 13 篇 bai long
  • 10 篇 xiaolong jin
  • 10 篇 huang qingming

语言

  • 452 篇 英文
  • 36 篇 其他
  • 3 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology"
491 条 记 录,以下是51-60 订阅
排序:
ICTNET at Trec 2019 Incident Streams Track  28
ICTNET at Trec 2019 Incident Streams Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Guangsheng, Kuang Kun, Zhang Jiabao, Zhang Xin, Zheng University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
Social medial become our public ways to share our information in our lives. Crisis management via social medial is becoming indispensable for its tremendous information. While deep learning shows surprising outcome in... 详细信息
来源: 评论
ICTNET at TREC 2019 News Track  28
ICTNET at TREC 2019 News Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ding, Yuyang Lian, Xiaoying Zhou, Houquan Liu, Zhaoge Ding, Hanxing Hou, Zhongni University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
This paper describes our work in the background linking task and entity ranking task in TREC 2018 News Track. We explore four methods in background linking task and two methods in entity ranking task. All of our metho...
来源: 评论
ICTNET at TREC 2019 Complex Answer Retrieval Track  28
ICTNET at TREC 2019 Complex Answer Retrieval Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ren, Hongfei Xiong, Ruibin Zeng, Yutao Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participate in the Complex Answer Retrieval(CAR) track at TREC 2019. We applied several useful models in this work. In the rough ranking, we applied doc2query model to predict queries and retrieve using BM25. In th...
来源: 评论
Match-SRNN: Modeling the recursive matching structure with spatial RNN  25
Match-SRNN: Modeling the recursive matching structure with s...
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Wan, Shengxian Lan, Yanyan Xu, Jun Guo, Jiafeng Pang, Liang Xueqi, Cheng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Semantic matching, which aims to determine the matching degree between two texts, is a fundamental problem for many NLP applications. Recently, deep learning approach has been applied to this problem and significant i... 详细信息
来源: 评论
ICTNET at Trec 2019 Decision Track  28
ICTNET at Trec 2019 Decision Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Cui, Wanqing Jiang, Yan Tao, Shuchang Guo, Hanzhang CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
In this paper we report on our participation in the Trec 2019 Decision Track[1] which aims to provide a venue for research on retrieval methods that promote better decision making with search engines and develop new o... 详细信息
来源: 评论
Predict anchor links across social networks via an embedding approach  25
Predict anchor links across social networks via an embedding...
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Man, Tong Shen, Huawei Liu, Shenghua Jin, Xiaolong Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Predicting anchor links across social networks has important implications to an array of applications, including cross-network information diffusion and cross-domain recommendation. One challenging problem is: whether... 详细信息
来源: 评论
Modeling retail transaction data for personalized shopping recommendation  14
Modeling retail transaction data for personalized shopping r...
收藏 引用
23rd ACM International Conference on Information and Knowledge Management, CIKM 2014
作者: Wang, Pengfei Guo, Jiangfeng Lan, Yanyan Cheng, Xueqi Key Lab. of Network Data Science and Technology ICT Beijing China
Retail transaction data conveys rich preference information on brands and goods from customers. How to mine the transaction data to provide personalized recommendation to customers becomes a critical task for retailer... 详细信息
来源: 评论
Lineament extraction and structural mapping using Landsat-9 OLI and Sentinel-1 SAR data in the Proterozoic North Singhbhum Mobile Belt, Eastern India
收藏 引用
Geosystems and Geoenvironment 2025年 第3期4卷
作者: Choudhury, Nandini Mitra, Atin Kumar Nath, Biswajit Lindsay, Mark D Structural Geology Laboratory Department of Earth Sciences Indian Institute of Engineering Science and Technology West Bengal Shibpur 711103 India Lab of Geoinformatics and Earth Observation Research (LGEOR) Department of Geography and Environmental Studies Faculty of Biological Sciences University of Chittagong Chittagong 4331 Bangladesh CAS-PIFI Visiting Scientist State Key Laboratory of Remote Sensing Science Aerospace Information Research Institute (AIR) Chinese Academy of Sciences (CAS) Olympic Science and Technology Park 20 Datun Road Chaoyang District Beijing 100101 China CSIRO Mineral Resources Kensington 6151 WA Australia School of Earth Sciences The University of Western Australia Crawley 6009 WA Australia ARC Industrial Transformation Training Centre in Data Analytics for Resources and Environment (DARE) Perth and Sydney Australia
The present study explores the application of Landsat-9 OLI and Sentinel-1 SAR data for effective lineament extraction and structural mapping in the Proterozoic North Singhbhum Mobile Belt, Eastern India, an area char... 详细信息
来源: 评论
AdaptFRCNet: Semi-supervised adaptation of pre-trained model with frequency and region consistency for medical image segmentation
收藏 引用
Medical Image Analysis 2025年 103卷 103626页
作者: Along He Yanlin Wu Zhihong Wang Tao Li Huazhu Fu College of Computer Science Tianjin Key Laboratory of Network and Data Security Technology Nankai University Tianjin 300350 China Haihe Lab of ITAI Tianjin 300459 China Institute of High Performance Computing (IHPC) Agency for Science Technology and Research (A*STAR) 138632 Singapore
Recently, large pre-trained models (LPM) have achieved great success, which provides rich feature representation for downstream tasks. Pre-training and then fine-tuning is an effective way to utilize LPM. However, the... 详细信息
来源: 评论
Visual Named Entity Linking: A New dataset and A Baseline
Visual Named Entity Linking: A New Dataset and A Baseline
收藏 引用
2022 Findings of the Association for Computational Linguistics: EMNLP 2022
作者: Sun, Wenxiang Fan, Yixing Guo, Jiafeng Zhang, Ruqing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Visual Entity Linking (VEL) is a task to link regions of images with their corresponding entities in Knowledge Bases (KBs), which is beneficial for many computer vision tasks such as image retrieval, image caption, an... 详细信息
来源: 评论