咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 372 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 207 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 54 篇 信息与通信工程
    • 35 篇 生物工程
    • 18 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 光学工程
    • 10 篇 电气工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
    • 6 篇 生物医学工程(可授...
    • 5 篇 机械工程
    • 4 篇 安全科学与工程
  • 133 篇 理学
    • 77 篇 数学
    • 36 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 10 篇 化学
    • 9 篇 系统科学
  • 105 篇 管理学
    • 81 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 12 篇 法学
    • 10 篇 社会学
  • 6 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
    • 3 篇 中国语言文学

主题

  • 19 篇 semantics
  • 13 篇 deep learning
  • 11 篇 knowledge graph
  • 11 篇 graph neural net...
  • 10 篇 information retr...
  • 9 篇 convolution
  • 8 篇 generative adver...
  • 8 篇 forecasting
  • 8 篇 training
  • 7 篇 machine learning
  • 6 篇 learning systems
  • 6 篇 computational mo...
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 deep neural netw...
  • 5 篇 signal encoding
  • 5 篇 computational li...
  • 5 篇 natural language...
  • 4 篇 surveys
  • 4 篇 computer archite...

机构

  • 128 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 23 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 institute of com...
  • 10 篇 key lab. of inte...
  • 10 篇 state key lab of...
  • 9 篇 school of comput...
  • 9 篇 key laboratory o...
  • 7 篇 key lab of intel...
  • 7 篇 peng cheng labor...
  • 7 篇 school of cyber ...
  • 6 篇 data intelligenc...
  • 6 篇 semiconductor ne...
  • 6 篇 alibaba group
  • 5 篇 data intelligenc...
  • 5 篇 institute of inf...
  • 5 篇 key laboratory o...

作者

  • 134 篇 cheng xueqi
  • 103 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 40 篇 shen huawei
  • 35 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 jin xiaolong
  • 28 篇 zhang ruqing
  • 22 篇 cao qi
  • 18 篇 xu jun
  • 17 篇 guan saiping
  • 17 篇 bai long
  • 16 篇 li zixuan
  • 13 篇 xueqi cheng
  • 13 篇 sun xiaoming
  • 10 篇 hou liang
  • 9 篇 huang qingming
  • 9 篇 huang junjie
  • 9 篇 chen wei
  • 8 篇 liu shenghua

语言

  • 353 篇 英文
  • 17 篇 其他
  • 2 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology Institute of Computing Technology"
372 条 记 录,以下是91-100 订阅
排序:
Spherical paragraph model
arXiv
收藏 引用
arXiv 2017年
作者: Zhang, Ruqing Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Representing texts as fixed-length vectors is central to many language processing tasks. Most traditional methods build text representations based on the simple Bag-of-Words (BoW) representation, which loses the rich ... 详细信息
来源: 评论
MatchZoo: A toolkit for deep text matching
arXiv
收藏 引用
arXiv 2017年
作者: Fan, Yixing Pang, Liang Hou, JianPeng Guo, Jiafeng Lan, Yanyan Cheng, Xueqi Cas Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
In recent years, deep neural models have been widely adopted for text matching tasks, such as question answering and information retrieval, showing improved performance as compared with previous methods. In this paper... 详细信息
来源: 评论
A commentary of Digital contact tracing in MIT technology Review 2021
收藏 引用
Fundamental Research 2021年 第6期1卷 838-839页
作者: Xueqi Cheng CAS Key Laboratory of Network Data Science and Technology Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China
In 2020,the COVID-19 pandemic has brought“digital contact tracing”to the forefront of public *** the context of COVID-19,technology has offered public health investigators a new capability for locating infected indi... 详细信息
来源: 评论
Enhanced Semantic Head for cascade Instance Segmentation
Enhanced Semantic Head for Cascade Instance Segmentation
收藏 引用
2022 IEEE International Conference on Multimedia and Expo, ICME 2022
作者: Huang, Xuerong Su, Li Li, Guorong Zhang, Xinfeng Qing, Laiyun Huang, Qingming University of Chinese Academy of Sciences Beijing China Cas Key Lab of Big Data Mining and Knowledge Management Beijing China Institute of Computing Technology Cas Key Lab of Intelligent Information Processing Beijing China
Recently, cascade instance segmentation inspired by cascade object detection has achieved notable performance. Due to the lack of global information, many methods suffer from incomplete segmentation such as missing ed... 详细信息
来源: 评论
Quantum-to-quantum Bernoulli factory problem
收藏 引用
Physical Review A 2018年 第3期97卷 032303-032303页
作者: Jiaqing Jiang Jialin Zhang Xiaoming Sun CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China
Given a coin with unknown bias p∈[0,1], can we exactly simulate another coin with bias f(p)? The exact set of simulable functions has been well characterized 20 years ago. In this paper, we ask the quantum counterpar... 详细信息
来源: 评论
Continuous Distributed Processing of Software Defined Radar
Continuous Distributed Processing of Software Defined Radar
收藏 引用
2021 CIE International Conference on Radar, Radar 2021
作者: Li, Bing Qiu, Qiang Gong, Shiqi Liu, Yongjun Lei, Yu Institute of Computing Technology CAS Key Lab of Network Data Science and Technology Chinese Academy of Sciences Beijing China State Key Laboratory of Internet of Things for Smart City University of Macau Macau China Xidian University National Laboratory of Radar Signal Processing Xi'an China Golaxy Data Technology Co. Ltd. Beijing China
Software-defined radar has been an active research field for more than ten years. However, the low performance and low scalability of the traditional processing techniques of SDR make it hard to deal with complex rada... 详细信息
来源: 评论
BaKGraSTeC: A Background Knowledge Graph Based Method for Short Text Classification
BaKGraSTeC: A Background Knowledge Graph Based Method for Sh...
收藏 引用
IEEE International Conference on Big Knowledge (ICBK)
作者: Xuhui Jiang Yinghan Shen Yuanzhuo Wang Xiaolong Jin Xueqi Cheng CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences
Short text classification is an important task in the area of natural language processing. Recent studies attempt to employ external knowledge to improve classification performance, but they ignore the correlation bet... 详细信息
来源: 评论
Parametric local multimodal hashing for cross-view similarity search
Parametric local multimodal hashing for cross-view similarit...
收藏 引用
23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
作者: Zhai, Deming Chang, Hong Zhen, Yi Liu, Xianming Chen, Xilin Gao, Wen School of Computer Science and Technology Harbin Institute of Technology Harbin China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Hong Kong University of Science and Technology Hong Kong Hong Kong
Recent years have witnessed the growing popularity of hashing for efficient large-scale similarity search. It has been shown that the hashing quality could be boosted by hash function learning (HFL). In this paper, we... 详细信息
来源: 评论
A tree search algorithm for sequence labeling
arXiv
收藏 引用
arXiv 2018年
作者: Lao, Yadi Xu, Jun Lan, Yanyan Guo, Jiafeng Gao, Sheng Cheng, Xueqi Guo, Jun Beijing University of Posts and Telecommunications CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Science
In this paper we propose a novel reinforcement learning based model for sequence tagging, referred to as MM-Tag. Inspired by the success and methodology of the AlphaGo Zero, MM-Tag formalizes the problem of sequence t... 详细信息
来源: 评论
On the Capacity of Citation Generation by Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Qian, Haosheng Fan, Yixing Zhang, Ruqing Guo, Jiafeng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Retrieval-augmented generation (RAG) appears as a promising method to alleviate the "hallucination" problem in large language models (LLMs), since it can incorporate external traceable resources for response...
来源: 评论