咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 372 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 207 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 54 篇 信息与通信工程
    • 35 篇 生物工程
    • 18 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 光学工程
    • 10 篇 电气工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
    • 6 篇 生物医学工程(可授...
    • 5 篇 机械工程
    • 4 篇 安全科学与工程
  • 133 篇 理学
    • 77 篇 数学
    • 36 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 10 篇 化学
    • 9 篇 系统科学
  • 105 篇 管理学
    • 81 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 12 篇 法学
    • 10 篇 社会学
  • 6 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
    • 3 篇 中国语言文学

主题

  • 19 篇 semantics
  • 13 篇 deep learning
  • 11 篇 knowledge graph
  • 11 篇 graph neural net...
  • 10 篇 information retr...
  • 9 篇 convolution
  • 8 篇 generative adver...
  • 8 篇 forecasting
  • 8 篇 training
  • 7 篇 machine learning
  • 6 篇 learning systems
  • 6 篇 computational mo...
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 deep neural netw...
  • 5 篇 signal encoding
  • 5 篇 computational li...
  • 5 篇 natural language...
  • 4 篇 surveys
  • 4 篇 computer archite...

机构

  • 128 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 23 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 institute of com...
  • 10 篇 key lab. of inte...
  • 10 篇 state key lab of...
  • 9 篇 school of comput...
  • 9 篇 key laboratory o...
  • 7 篇 key lab of intel...
  • 7 篇 peng cheng labor...
  • 7 篇 school of cyber ...
  • 6 篇 data intelligenc...
  • 6 篇 semiconductor ne...
  • 6 篇 alibaba group
  • 5 篇 data intelligenc...
  • 5 篇 institute of inf...
  • 5 篇 key laboratory o...

作者

  • 134 篇 cheng xueqi
  • 103 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 40 篇 shen huawei
  • 35 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 jin xiaolong
  • 28 篇 zhang ruqing
  • 22 篇 cao qi
  • 18 篇 xu jun
  • 17 篇 guan saiping
  • 17 篇 bai long
  • 16 篇 li zixuan
  • 13 篇 xueqi cheng
  • 13 篇 sun xiaoming
  • 10 篇 hou liang
  • 9 篇 huang qingming
  • 9 篇 huang junjie
  • 9 篇 chen wei
  • 8 篇 liu shenghua

语言

  • 353 篇 英文
  • 17 篇 其他
  • 2 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology Institute of Computing Technology"
372 条 记 录,以下是191-200 订阅
排序:
Twin Weisfeiler-Lehman: High Expressive GNNs for Graph Classification
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Zhaohui Cao, Qi Shen, Huawei Xu, Bingbing Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Cas Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
The expressive power of message passing GNNs is upper-bounded by Weisfeiler-Lehman (WL) test. To achieve high expressive GNNs beyond WL test, we propose a novel graph isomorphism test method, namely Twin-WL, which sim... 详细信息
来源: 评论
PREP: Pre-training with Temporal Elapse Inference for Popularity Prediction
arXiv
收藏 引用
arXiv 2021年
作者: Cao, Qi Shen, Huawei Liu, Yuanhao Gao, Jinhua Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences China Cas Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Predicting the popularity of online content is a fundamental problem in various applications. One practical challenge takes roots in the varying length of observation time or prediction horizon, i.e., a good model for... 详细信息
来源: 评论
Self-Supervised GANs with label Augmentation
arXiv
收藏 引用
arXiv 2021年
作者: Hou, Liang Shen, Huawei Cao, Qi Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Recently, transformation-based self-supervised learning has been applied to generative adversarial networks (GANs) to mitigate catastrophic forgetting in the discriminator by introducing a stationary learning environm... 详细信息
来源: 评论
On the Effectiveness of Function-Level Vulnerability Detectors for Inter-Procedural Vulnerabilities  24
On the Effectiveness of Function-Level Vulnerability Detecto...
收藏 引用
44th ACM/IEEE International Conference on Software Engineering, ICSE 2024
作者: Li, Zhen Wang, Ning Zou, Deqing Li, Yating Zhang, Ruqian Xu, Shouhuai Zhang, Chao Jin, Hai Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security Cluster and Grid Computing Lab National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Hong Kong Jin YinHu Laboratory Wuhan China School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan China University of Colorado Colorado Springs Department of Computer Science Colorado Springs Colorado United States Institute for Network Sciences and Cyberspace Tsinghua University Beijing China School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China
Software vulnerabilities are a major cyber threat and it is important to detect them. One important approach to detecting vulnerabilities is to use deep learning while treating a program function as a whole, known as ... 详细信息
来源: 评论
Match-ignition: Plugging PageRank into transformer for long-form text matching
arXiv
收藏 引用
arXiv 2021年
作者: Pang, Liang Lan, Yanyan Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences Beijing China Institute for AI Industry Research Tsinghua University Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Neural text matching models have been widely used in community question answering, information retrieval, and dialogue. However, these models designed for short texts cannot well address the long-form text matching pr...
来源: 评论
Slimmable generative adversarial networks
arXiv
收藏 引用
arXiv 2020年
作者: Hou, Liang Yuan, Zehuan Huang, Lei Shen, Huawei Cheng, Xueqi Wang, Changhu CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences ByteDance AI Lab SKLSDE Institute of Artificial Intelligence Beihang University
Generative adversarial networks (GANs) have achieved remarkable progress in recent years, but the continuously growing scale of models makes them challenging to deploy widely in practical applications. In particular, ... 详细信息
来源: 评论
Transductive learning for unsupervised text style transfer
arXiv
收藏 引用
arXiv 2021年
作者: Xiao, Fei Pang, Liang Lan, Yanyan Wang, Yan Shen, Huawei Cheng, Xueqi Data Intelligence System Research Center Cas Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Institute for Ai Industry Research Tsinghua University University of Chinese Academy of Sciences Tencent Ai Lab
Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules... 详细信息
来源: 评论
Ranking enhanced dialogue generation
arXiv
收藏 引用
arXiv 2020年
作者: Hao, Changying Pang, Liang Lan, Yanyan Sun, Fei Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Alibaba Group Beijing China
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation. Previous works usually employ various neural network architectures (e.g., recurrent neural networks, attention me... 详细信息
来源: 评论
Perturbation-Invariant Adversarial Training for Neural Ranking Models: Improving the Effectiveness-Robustness Trade-Off
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yu-An Zhang, Ruqing Zhang, Mingkun Chen, Wei de Rijke, Maarten Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China University of Amsterdam Amsterdam Netherlands
Neural ranking models (NRMs) have shown great success in information retrieval (IR). But their predictions can easily be manipulated using adversarial examples, which are crafted by adding imperceptible perturbations ... 详细信息
来源: 评论
aNMM: Ranking short answer texts with attention-based neural matching model
arXiv
收藏 引用
arXiv 2018年
作者: Yang, Liu Ai, Qingyao Guo, Jiafeng Bruce Croft, W. Center for Intelligent Information Retrieval University of Massachusetts AmherstMA United States CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
As an alternative to question answering methods based on feature engineering, deep learning approaches such as convolutional neural networks (CNNs) and Long Short-Term Memory Models (LSTMs) have recently been proposed... 详细信息
来源: 评论