咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 372 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 207 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 54 篇 信息与通信工程
    • 35 篇 生物工程
    • 18 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 光学工程
    • 10 篇 电气工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
    • 6 篇 生物医学工程(可授...
    • 5 篇 机械工程
    • 4 篇 安全科学与工程
  • 133 篇 理学
    • 77 篇 数学
    • 36 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 10 篇 化学
    • 9 篇 系统科学
  • 105 篇 管理学
    • 81 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 12 篇 法学
    • 10 篇 社会学
  • 6 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
    • 3 篇 中国语言文学

主题

  • 19 篇 semantics
  • 13 篇 deep learning
  • 11 篇 knowledge graph
  • 11 篇 graph neural net...
  • 10 篇 information retr...
  • 9 篇 convolution
  • 8 篇 generative adver...
  • 8 篇 forecasting
  • 8 篇 training
  • 7 篇 machine learning
  • 6 篇 learning systems
  • 6 篇 computational mo...
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 deep neural netw...
  • 5 篇 signal encoding
  • 5 篇 computational li...
  • 5 篇 natural language...
  • 4 篇 surveys
  • 4 篇 computer archite...

机构

  • 128 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 23 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 institute of com...
  • 10 篇 key lab. of inte...
  • 10 篇 state key lab of...
  • 9 篇 school of comput...
  • 9 篇 key laboratory o...
  • 7 篇 key lab of intel...
  • 7 篇 peng cheng labor...
  • 7 篇 school of cyber ...
  • 6 篇 data intelligenc...
  • 6 篇 semiconductor ne...
  • 6 篇 alibaba group
  • 5 篇 data intelligenc...
  • 5 篇 institute of inf...
  • 5 篇 key laboratory o...

作者

  • 134 篇 cheng xueqi
  • 103 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 40 篇 shen huawei
  • 35 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 jin xiaolong
  • 28 篇 zhang ruqing
  • 22 篇 cao qi
  • 18 篇 xu jun
  • 17 篇 guan saiping
  • 17 篇 bai long
  • 16 篇 li zixuan
  • 13 篇 xueqi cheng
  • 13 篇 sun xiaoming
  • 10 篇 hou liang
  • 9 篇 huang qingming
  • 9 篇 huang junjie
  • 9 篇 chen wei
  • 8 篇 liu shenghua

语言

  • 353 篇 英文
  • 17 篇 其他
  • 2 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology Institute of Computing Technology"
372 条 记 录,以下是201-210 订阅
排序:
DeepRank: A New Deep Architecture for Relevance Ranking in Information Retrieval
arXiv
收藏 引用
arXiv 2017年
作者: Pang, Liang Lan, Yanyan Guo, Jiafeng Xu, Jun Xu, Jingfang Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Sogou Inc Beijing China
This paper concerns a deep learning approach to relevance ranking in information retrieval (IR). Existing deep IR models such as DSSM and CDSSM directly apply neural networks to generate ranking scores, without explic... 详细信息
来源: 评论
PGGAN: Improve Password Cover Rate Using the Controller
PGGAN: Improve Password Cover Rate Using the Controller
收藏 引用
2021 International Conference on Computer network Security and Software Engineering, CNSSE 2021
作者: Guo, Xiaozhou Liu, Yi Tan, Kaijun Jin, Min Lu, Huaxiang Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China University of Chinese Academy of Sciences Beijing100089 China Cas Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Beijing200031 China Semiconductor Neural Network Intelligent Perception and Computing Technology Beijing Key Lab Beijing100083 China
Password generation model based on generative adversarial network usually has the problem of high duplicate rate, which further leads to low cover rate. In this regard, we propose PGGAN model. It sets up an additional... 详细信息
来源: 评论
A deep relevance matching model for ad-hoc retrieval
arXiv
收藏 引用
arXiv 2017年
作者: Guo, Jiafeng Fan, Yixing Ai, Qingyao Bruce Croft, W. CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China Center for Intelligent Information Retrieval University of Massachusetts Amherst MA United States
In recent years, deep neural networks have led to exciting breakthroughs in speech recognition, computer vision, and natural language processing (NLP) tasks. However, there have been few positive results of deep model... 详细信息
来源: 评论
Sdgan: Improve Speech Enhancement Quality by Information Filter  6
Sdgan: Improve Speech Enhancement Quality by Information Fil...
收藏 引用
2021 6th International Symposium on Advances in Electrical, Electronics and Computer Engineering, ISAEECE 2021
作者: Guo, Xiaozhou Liu, Yi Mao, Wenyu Li, Jixing Li, Wenchang Gong, Guoliang Lu, Huaxiang Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China University of Chinese Academy of Sciences Beijing100089 China CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Beijing200031 China Semiconductor Neural Network Intelligent Perception and Computing Technology Beijing Key Lab Beijing100083 China
The speech denoising model based on adversarial generative network has achieved better results than the traditional machine learning model. In this paper, for the short cut connection in the generator, we discuss its ... 详细信息
来源: 评论
Nested Event Extraction upon Pivot Element Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Ren, Weicheng Li, Zixuan Jin, Xiaolong Bai, Long Su, Miao Liu, Yantao Guan, Saiping Guo, Jiafeng Cheng, Xueqi School of Computer Science and Technology University of Chinese Academy of Sciences China Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
Nested Event Extraction (NEE) aims to extract complex event structures where an event contains other events as its arguments recursively. Nested events involve a kind of Pivot Elements (PEs) that simultaneously act as... 详细信息
来源: 评论
TOWARDS GENERALIZABLE GRAPH CONTRASTIVE LEARNING: AN INFORMATION THEORY PERSPECTIVE
arXiv
收藏 引用
arXiv 2022年
作者: Yuan, Yige Xu, Bingbing Shen, Huawei Cao, Qi Cen, Keting Zheng, Wen Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences Beijing China CAS Key Laboratory of Network Data Science and Technology Institute of Com- puting Technology Chinese Academy of Sciences Beijing China
Graph contrastive learning (GCL) emerges as the most representative approach for graph representation learning, which leverages the principle of maximizing mutual information (InfoMax) to learn node representations ap... 详细信息
来源: 评论
HiSMatch: Historical Structure Matching based Temporal Knowledge Graph Reasoning
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zixuan Hou, Zhongni Guan, Saiping Jin, Xiaolong Peng, Weihua Bai, Long Lyu, Yajuan Li, Wei Guo, Jiafeng Cheng, Xueqi School of Computer Science and Technology University of Chinese Academy of Sciences China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China Baidu Inc China
A Temporal Knowledge Graph (TKG) is a sequence of KGs with respective timestamps, which adopts quadruples in the form of (subject, relation, object, timestamp) to describe dynamic facts. TKG reasoning has facilitated ... 详细信息
来源: 评论
Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zixuan Guan, Saiping Jin, Xiaolong Peng, Weihua Lyu, Yajuan Zhu, Yong Bai, Long Li, Wei Guo, Jiafeng Cheng, Xueqi School of Computer Science and Technology University of Chinese Academy of Sciences China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China Baidu Inc China
A Temporal Knowledge Graph (TKG) is a sequence of KGs corresponding to different timestamps. TKG reasoning aims to predict potential facts in the future given the historical KG sequences. One key of this task is to mi... 详细信息
来源: 评论
Augmentation-aware self-supervision for data-efficient GAN training  23
Augmentation-aware self-supervision for data-efficient GAN t...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Liang Hou Qi Cao Yige Yuan Songtao Zhao Chongyang Ma Siyuan Pan Pengfei Wan Zhongyuan Wang Huawei Shen Xueqi Cheng CAS Key Laboratory of AI Safety and Security Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences and Kuaishou Technology CAS Key Laboratory of AI Safety and Security Institute of Computing Technology Chinese Academy of Sciences CAS Key Laboratory of AI Safety and Security Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Kuaishou Technology CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting. Previously proposed differentiable augmentation demonstrates improved data efficiency...
来源: 评论
Self-supervised GANs with label augmentation  21
Self-supervised GANs with label augmentation
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Liang Hou Huawei Shen Qi Cao Xueqi Cheng Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences
Recently, transformation-based self-supervised learning has been applied to generative adversarial networks (GANs) to mitigate catastrophic forgetting in the discriminator by introducing a stationary learning environm...
来源: 评论