咨询与建议

限定检索结果

文献类型

  • 198 篇 期刊文献
  • 176 篇 会议

馆藏范围

  • 374 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 248 篇 工学
    • 205 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 54 篇 信息与通信工程
    • 35 篇 生物工程
    • 18 篇 控制科学与工程
    • 11 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 光学工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
    • 6 篇 生物医学工程(可授...
    • 5 篇 机械工程
    • 4 篇 安全科学与工程
  • 132 篇 理学
    • 77 篇 数学
    • 36 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 10 篇 化学
    • 8 篇 系统科学
  • 105 篇 管理学
    • 81 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 12 篇 法学
    • 10 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 医学
    • 4 篇 基础医学(可授医学...
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
    • 3 篇 中国语言文学
    • 3 篇 外国语言文学

主题

  • 19 篇 semantics
  • 13 篇 deep learning
  • 11 篇 knowledge graph
  • 11 篇 graph neural net...
  • 10 篇 information retr...
  • 9 篇 convolution
  • 8 篇 generative adver...
  • 8 篇 forecasting
  • 8 篇 training
  • 7 篇 machine learning
  • 6 篇 learning systems
  • 6 篇 computational mo...
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 deep neural netw...
  • 5 篇 signal encoding
  • 5 篇 computational li...
  • 5 篇 natural language...
  • 4 篇 surveys
  • 4 篇 computer archite...

机构

  • 127 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 62 篇 cas key laborato...
  • 23 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 key lab. of inte...
  • 12 篇 institute for ai...
  • 11 篇 school of comput...
  • 11 篇 institute of com...
  • 10 篇 state key lab of...
  • 9 篇 key laboratory o...
  • 7 篇 key lab of intel...
  • 7 篇 peng cheng labor...
  • 7 篇 school of cyber ...
  • 6 篇 data intelligenc...
  • 6 篇 semiconductor ne...
  • 6 篇 alibaba group
  • 5 篇 data intelligenc...
  • 5 篇 institute of inf...
  • 5 篇 key laboratory o...

作者

  • 134 篇 cheng xueqi
  • 103 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 40 篇 shen huawei
  • 35 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 jin xiaolong
  • 28 篇 zhang ruqing
  • 22 篇 cao qi
  • 18 篇 xu jun
  • 17 篇 guan saiping
  • 17 篇 bai long
  • 16 篇 li zixuan
  • 14 篇 xueqi cheng
  • 13 篇 sun xiaoming
  • 10 篇 hou liang
  • 9 篇 huang qingming
  • 9 篇 huang junjie
  • 9 篇 chen wei
  • 8 篇 liu shenghua

语言

  • 354 篇 英文
  • 18 篇 其他
  • 2 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology Institute of Computing Technology"
374 条 记 录,以下是241-250 订阅
排序:
FlickerNet: Adaptive 3D gesture recognition from sparse point clouds  30
FlickerNet: Adaptive 3D gesture recognition from sparse poin...
收藏 引用
30th British Machine Vision Conference, BMVC 2019
作者: Min, Yuecong Chai, Xiujuan Zhao, Lei Chen, Xilin Inst. of Computing Technology CAS Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Agricultural Information Institute Chinese Academy of Agricultural Sciences Key Lab of Agricultural Big Data Ministry of Agriculture Beijing100081 China HUAWEI Technologies CO. LTD. Beijing100095 China
Recent studies on gesture recognition use deep convolutional neural networks (CNNs) to extract spatio-temporal features from individual frames or short video clips. However, extracting features frame-by-frame will bri... 详细信息
来源: 评论
Optimal algorithm for profiling dynamic arrays with finite values  22
Optimal algorithm for profiling dynamic arrays with finite v...
收藏 引用
22nd International Conference on Extending database technology, EDBT 2019
作者: Yang, Dingcheng Yu, Wenjian Deng, Junhui Liu, Shenghua BNRist Dept. Computer Science and Tech. Tsinghua Univ. Beijing China CAS Key Lab. Network Data Science and Tech. Inst. Computing Technology Chinese Academy of Sciences Beijing China
How can one quickly answer the most and top popular objects at any time, given a large log stream in a system of billions of users? It is equivalent to find the mode and top-frequent elements in a dynamic array corres... 详细信息
来源: 评论
Beatgan: Anomalous rhythm detection using adversarially generated time series  28
Beatgan: Anomalous rhythm detection using adversarially gene...
收藏 引用
28th International Joint Conference on Artificial Intelligence, IJCAI 2019
作者: Zhou, Bin Liu, Shenghua Hooi, Bryan Cheng, Xueqi Ye, Jing Institute of Computing Technology Chinese Academy of Sciences China School of Computer Science National University of Singapore Singapore Department of Anesthesiology Nanfang Hospital Southern Medical University China CAS Key Laboratory of Network Data Science and Technology University of Chinese Academy of Sciences Beijing China
Given a large-scale rhythmic time series containing mostly normal data segments (or 'beats'), can we learn how to detect anomalous beats in an effective yet efficient way? For example, how can we detect anomal...
来源: 评论
Structure Embedded Nucleus Classification for Histopathology Images
arXiv
收藏 引用
arXiv 2023年
作者: Lou, Wei Wan, Xiang Li, Guanbin Lou, Xiaoying Li, Chenghang Gao, Feng Li, Haofeng Shenzhen Research Institute of Big Data Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong at Shenzhen Shenzhen518172 China Pazhou Lab Guangzhou510330 China The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510006 China Department of Pathology Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases The Sixth Affiliated Hospital of Sun Yat-sen University Guangzhou China Artificial Intelligence Thrust The Hong Kong University of Science and Technology at Guangzhou Guangzhou510030 China Department of Colorectal Surgery Department of General Surgery Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases The Sixth Affiliated Hospital Sun Yat-sen University Guangzhou510655 China Shanghai Artificial Intelligence Laboratory Shanghai China
Nuclei classification provides valuable information for histopathology image analysis. However, the large variations in the appearance of different nuclei types cause difficulties in identifying nuclei. Most neural ne... 详细信息
来源: 评论
Multi-label Classification with High-rank and High-order label Correlations
arXiv
收藏 引用
arXiv 2022年
作者: Si, Chongjie Jia, Yuheng Wang, Ran Zhang, Min-Ling Feng, Yanghe Qu, Chongxiao The Chien-Shiung Wu College Southeast University Nanjing210096 China The MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China The School of Computer Science and Engineering Southeast University Nanjing210096 China Ministry of Education China School of Computing & Information Sciences Caritas Institute of Higher Education Hong Kong The Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China The School of Mathematical Science Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Systems Engineering National University of Defense Technology China The 52nd Research Institute of China Electronics Technology Group China
Exploiting label correlations is important to multi-label classification. Previous methods capture the high-order label correlations mainly by transforming the label matrix to a latent label space with low-rank matrix... 详细信息
来源: 评论
ReCoSa: Detecting the relevant contexts with self-attention for multi-turn dialogue generation
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Hainan Y., Lan L., Pang J., Guo X., Cheng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China
In multi-turn dialogue generation, response is usually related with only a few contexts. Therefore, an ideal model should be able to detect these relevant contexts and produce a suitable response accordingly. However,... 详细信息
来源: 评论
Mesh Variational Autoencoders with Edge Contraction Pooling
Mesh Variational Autoencoders with Edge Contraction Pooling
收藏 引用
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Yu-Jie Yuan Yu-Kun Lai Jie Yang Qi Duan Hongbo Fu Lin Gao Institute of Computing Technology CAS Beijing Key Laboratory of Mobile Computing and Pervasive Device School of Computer Science and Informatics Cardiff University UK SenseTime Research City University of Hong Kong Shenzhen Research Institute of Big Data Shenzhen
3D shape analysis is an important research topic in computer vision and graphics. While existing methods have generalized image-based deep learning to meshes using graph-based convolutions, the lack of an effective po... 详细信息
来源: 评论
Trusted Clustering Based Federated Learning in Edge networks
收藏 引用
IEEE Transactions on Mobile computing 2025年
作者: Liu, Yi-Jing Zhang, Long Li, Xiaoqian Du, Hongyang Feng, Gang Qin, Shuang Wang, Jiacheng University of Electronic Science and Technology of China National Key Lab on Wireless Communications Chengdu China Tsinghua University Sichuan Energy Internet Research Institute Chengdu China University of Hong Kong Department of Electrical and Electronic Engineering Hong Kong Hong Kong Nanyang Technological University College of Computing and Data Science Singapore
Federated learning (FL) is integral to advancing edge intelligence by enabling collaborative machine learning. In FL-empowered edge networks, computing nodes first train local models and then send them to an or multip... 详细信息
来源: 评论
GREYONE: data flow sensitive fuzzing  20
GREYONE: data flow sensitive fuzzing
收藏 引用
Proceedings of the 29th USENIX Conference on Security Symposium
作者: Shuitao Gan Chao Zhang Peng Chen Bodong Zhao Xiaojun Qin Dong Wu Zuoning Chen State Key Laboratory of Mathematical Engineering and Advanced Computing Institute for Network Science and Cyberspace Tsinghua University and Beijing National Research Center for Information Science and Technology ByteDance AI lab Institute for Network Science and Cyberspace Tsinghua University National Research Center of Parallel Computer Engineering and Technology
data flow analysis (e.g., dynamic taint analysis) has proven to be useful for guiding fuzzers to explore hard-to-reach code and find vulnerabilities. However, traditional taint analysis is labor-intensive, inaccurate ...
来源: 评论
Controlling risk of web question answering
arXiv
收藏 引用
arXiv 2019年
作者: Su, Lixin Guo, Jiafeng Fan, Yixing Lan, Yanyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Web question answering (QA) has become an indispensable component in modern search systems, which can significantly improve users’ search experience by providing a direct answer to users’ information need. This coul... 详细信息
来源: 评论