咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 372 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 207 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 54 篇 信息与通信工程
    • 35 篇 生物工程
    • 18 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 光学工程
    • 10 篇 电气工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
    • 6 篇 生物医学工程(可授...
    • 5 篇 机械工程
    • 4 篇 安全科学与工程
  • 133 篇 理学
    • 77 篇 数学
    • 36 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 10 篇 化学
    • 9 篇 系统科学
  • 105 篇 管理学
    • 81 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 12 篇 法学
    • 10 篇 社会学
  • 6 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
    • 3 篇 中国语言文学

主题

  • 19 篇 semantics
  • 13 篇 deep learning
  • 11 篇 knowledge graph
  • 11 篇 graph neural net...
  • 10 篇 information retr...
  • 9 篇 convolution
  • 8 篇 generative adver...
  • 8 篇 forecasting
  • 8 篇 training
  • 7 篇 machine learning
  • 6 篇 learning systems
  • 6 篇 computational mo...
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 deep neural netw...
  • 5 篇 signal encoding
  • 5 篇 computational li...
  • 5 篇 natural language...
  • 4 篇 surveys
  • 4 篇 computer archite...

机构

  • 128 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 23 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 institute of com...
  • 10 篇 key lab. of inte...
  • 10 篇 state key lab of...
  • 9 篇 school of comput...
  • 9 篇 key laboratory o...
  • 7 篇 key lab of intel...
  • 7 篇 peng cheng labor...
  • 7 篇 school of cyber ...
  • 6 篇 data intelligenc...
  • 6 篇 semiconductor ne...
  • 6 篇 alibaba group
  • 5 篇 data intelligenc...
  • 5 篇 institute of inf...
  • 5 篇 key laboratory o...

作者

  • 134 篇 cheng xueqi
  • 103 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 40 篇 shen huawei
  • 35 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 jin xiaolong
  • 28 篇 zhang ruqing
  • 22 篇 cao qi
  • 18 篇 xu jun
  • 17 篇 guan saiping
  • 17 篇 bai long
  • 16 篇 li zixuan
  • 13 篇 xueqi cheng
  • 13 篇 sun xiaoming
  • 10 篇 hou liang
  • 9 篇 huang qingming
  • 9 篇 huang junjie
  • 9 篇 chen wei
  • 8 篇 liu shenghua

语言

  • 353 篇 英文
  • 17 篇 其他
  • 2 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology Institute of Computing Technology"
372 条 记 录,以下是271-280 订阅
排序:
Group RandAugment: Video Augmentation for Action Recognition  5
Group RandAugment: Video Augmentation for Action Recognition
收藏 引用
5th International Conference on data science and Information technology, DSIT 2022
作者: An, Fengmin Zhang, Bingbing Wang, Zhenwei Dong, Wei Zhang, Jianxin School of Computer Science and Engineering Dalian Minzu University Dalian China Institute of Machine Intelligence and Bio-computing Dalian Minzu University Dalian China SEAC Key Lab of Big Data Applied Technology Dalian Minzu University Dalian China School of Information and Communication Engineering Dalian University of Technology Dalian China
data augmentation, as a critical strategy in deep learning, well improves the sample diversity for network training, leading to the obvious improvement of model generalization ability. Besides, automatic data augmenta... 详细信息
来源: 评论
Continuous Distributed Processing of Software Defined Radar
Continuous Distributed Processing of Software Defined Radar
收藏 引用
IEEE International Conference on Radar
作者: Bing Li Qiang Qiu Shiqi Gong Yongjun Liu Yu Lei CAS Key Lab of Network Data Science and Technology Chinese Academy of Sciences Institute of Computing Technology Beijing China State Key Laboratory of Internet of Things for Smart City University of Macau Macau China National Laboratory of Radar Signal Processing Xidian University Xi'an China Golaxy Data Technology Co. Ltd. Beijing China
Software-defined radar has been an active research field for more than ten years. However, the low performance and low scalability of the traditional processing techniques of SDR make it hard to deal with complex rada... 详细信息
来源: 评论
Reverse Perspective network for Perspective-Aware Object Counting
Reverse Perspective Network for Perspective-Aware Object Cou...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yifan Yang Guorong Li Zhe Wu Li Su Qingming Huang Nicu Sebe School of Computer Science and Technology UCAS Beijing China Key Lab of Big Data Mining and Knowledge Management UCAS Beijing China Key Lab of Intelligent Information Processing Institute of Computing Technology CAS Beijing China University of Trento Trento Italy
One of the critical challenges of object counting is the dramatic scale variations, which is introduced by arbitrary perspectives. We propose a reverse perspective network to solve the scale variations of input images... 详细信息
来源: 评论
Social sensing enhanced time estimation for bus service
Social sensing enhanced time estimation for bus service
收藏 引用
作者: Liu, Jin Li, Juan Cui, Xiaohui Niu, Xiaoguang Sun, Xiaoping Zhou, Jing State Key Lab. of Software Engineering Computer School Wuhan University Wuhan China Guangxi Key Laboratory of Trusted Software Guilin University of Electronic Technology Guilin China International School of Software Wuhan University Wuhan China Computer School Wuhan University Wuhan China Key Lab of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science Communication University of China China
The precise prediction of bus routes or the arrival time of buses for a traveler can enhance the quality of bus service. However, many social factors influence people's preferences for taking buses. These social f... 详细信息
来源: 评论
Reactive Workflow Scheduling in Fluctuant Infrastructure-as-a-Service Clouds Using Deep Reinforcement Learning  16th
Reactive Workflow Scheduling in Fluctuant Infrastructure-as-...
收藏 引用
16th EAI International Conference on Collaborative computing: networking, Applications, and Worksharing, CollaborateCom 2020
作者: Peng, Qinglan Zheng, Wanbo Xia, Yunni Wu, Chunrong Li, Yin Long, Mei Li, Xiaobo Software Theory and Technology Chongqing Key Lab Chongqing University Chongqing400044 China Data Science Research Center Kunming University of Science and Technology Kunming650031 China Institute of Software Application Technology Guangzhou & Chinese Academy of Sciences Guangzhou511000 China ZBJ Network Co. Ltd. Chongqing401123 China Chongqing Animal Husbandry Techniques Extension Center Chongqing401121 China
As a promising and evolving computing paradigm, cloud computing benefits scientific computing-related computational-intensive applications, which usually orchestrated in terms of workflows, by providing unlimited, ela... 详细信息
来源: 评论
Primitives generation policy learning without catastrophic forgetting for robotic manipulation  19
Primitives generation policy learning without catastrophic f...
收藏 引用
19th IEEE International Conference on data Mining Workshops, ICDMW 2019
作者: Xiong, Fangzhou Liu, Zhiyong Huang, Kaizhu Yang, Xu Hussain, Amir State Key Lab of Management and Control for Complex Systems Institute of Automation Chinese Academy of Science China China CAS Centre for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences China Department of EEE Xi'an Jiaotong-Liverpool University China School of Computing Edinburgh Napier University United Kingdom
Catastrophic forgetting is a tough challenge when agent attempts to address different tasks sequentially without storing previous information, which gradually hinders the development of continual learning. Except for ... 详细信息
来源: 评论
FlickerNet: Adaptive 3D gesture recognition from sparse point clouds  30
FlickerNet: Adaptive 3D gesture recognition from sparse poin...
收藏 引用
30th British Machine Vision Conference, BMVC 2019
作者: Min, Yuecong Chai, Xiujuan Zhao, Lei Chen, Xilin Inst. of Computing Technology CAS Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Agricultural Information Institute Chinese Academy of Agricultural Sciences Key Lab of Agricultural Big Data Ministry of Agriculture Beijing100081 China HUAWEI Technologies CO. LTD. Beijing100095 China
Recent studies on gesture recognition use deep convolutional neural networks (CNNs) to extract spatio-temporal features from individual frames or short video clips. However, extracting features frame-by-frame will bri... 详细信息
来源: 评论
Unifying and Improving Graph Convolutional Neural networks with Wavelet Denoising Filters  23
Unifying and Improving Graph Convolutional Neural Networks w...
收藏 引用
2023 World Wide Web Conference, WWW 2023
作者: Wan, Liangtian Li, Xiaona Han, Huijin Yan, Xiaoran Sun, Lu Ning, Zhaolong Xia, Feng Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province School of Software Dalian University of Technology Dalian China Research Center of Big Data Intelligence Research Institute of Artificial Intelligence Zhejiang Lab Hangzhou China Department of Communication Engineering Institute of Information Science Technology Dalian Maritime University Dalian China School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China School of Computing Technologies Rmit University Melbourne Australia
Graph convolutional neural network (GCN) is a powerful deep learning framework for network data. However, variants of graph neural architectures can lead to drastically different performance on different tasks. Model ... 详细信息
来源: 评论
Freeway: Adaptively Isolating the Elephant and Mice Flows on Different Transmission Paths
Freeway: Adaptively Isolating the Elephant and Mice Flows on...
收藏 引用
International Conference on network Protocols
作者: Wei Wang Yi Sun Kai Zheng Mohamed Ali Kaafar Dan Li Zhongcheng Li University of Chinese Academy of Science CAS Institute of Computing Technology State Key Laboratory of Networking Switching Technology IBM China Research Lab NICTA Australia Tsinghua University
The network resource competition of today' data enters is extremely intense between long-lived elephant flows and latency-sensitive mice flows. Achieving both goals of high throughput and low latency respectively ... 详细信息
来源: 评论
Optimal algorithm for profiling dynamic arrays with finite values
arXiv
收藏 引用
arXiv 2018年
作者: Yang, Dingcheng Yu, Wenjian Deng, Junhui Liu, Shenghua BNRist Dept. Computer Science & Tech. Tsinghua Univ. Beijing China CAS Key Lab. Network Data Science & Tech. Inst. Computing Technology Chinese Academy of Sciences Beijing China
How can one quickly answer the most and top popular objects at any time, given a large log stream in a system of billions of users? It is equivalent to find the mode and top-frequent elements in a dynamic array corres... 详细信息
来源: 评论