咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 372 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 207 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 54 篇 信息与通信工程
    • 35 篇 生物工程
    • 18 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 光学工程
    • 10 篇 电气工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
    • 6 篇 生物医学工程(可授...
    • 5 篇 机械工程
    • 4 篇 安全科学与工程
  • 133 篇 理学
    • 77 篇 数学
    • 36 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 10 篇 化学
    • 9 篇 系统科学
  • 105 篇 管理学
    • 81 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 12 篇 法学
    • 10 篇 社会学
  • 6 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
    • 3 篇 中国语言文学

主题

  • 19 篇 semantics
  • 13 篇 deep learning
  • 11 篇 knowledge graph
  • 11 篇 graph neural net...
  • 10 篇 information retr...
  • 9 篇 convolution
  • 8 篇 generative adver...
  • 8 篇 forecasting
  • 8 篇 training
  • 7 篇 machine learning
  • 6 篇 learning systems
  • 6 篇 computational mo...
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 deep neural netw...
  • 5 篇 signal encoding
  • 5 篇 computational li...
  • 5 篇 natural language...
  • 4 篇 surveys
  • 4 篇 computer archite...

机构

  • 128 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 23 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 institute of com...
  • 10 篇 key lab. of inte...
  • 10 篇 state key lab of...
  • 9 篇 school of comput...
  • 9 篇 key laboratory o...
  • 7 篇 key lab of intel...
  • 7 篇 peng cheng labor...
  • 7 篇 school of cyber ...
  • 6 篇 data intelligenc...
  • 6 篇 semiconductor ne...
  • 6 篇 alibaba group
  • 5 篇 data intelligenc...
  • 5 篇 institute of inf...
  • 5 篇 key laboratory o...

作者

  • 134 篇 cheng xueqi
  • 103 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 40 篇 shen huawei
  • 35 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 jin xiaolong
  • 28 篇 zhang ruqing
  • 22 篇 cao qi
  • 18 篇 xu jun
  • 17 篇 guan saiping
  • 17 篇 bai long
  • 16 篇 li zixuan
  • 13 篇 xueqi cheng
  • 13 篇 sun xiaoming
  • 10 篇 hou liang
  • 9 篇 huang qingming
  • 9 篇 huang junjie
  • 9 篇 chen wei
  • 8 篇 liu shenghua

语言

  • 353 篇 英文
  • 17 篇 其他
  • 2 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology Institute of Computing Technology"
372 条 记 录,以下是21-30 订阅
排序:
Sparse word embeddings using l1 regularized online learning  25
Sparse word embeddings using l1 regularized online learning
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Sun, Fei Guo, Jiafeng Lan, Yanyan Xu, Jun Xueqi, Cheng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
Recently, Word2Vec tool has attracted a lot of interest for its promising performances in a variety of natural language processing (NLP) tasks. However, a critical issue is that the dense word representations learned ... 详细信息
来源: 评论
Multi-task representation learning for demographic prediction  38th
Multi-task representation learning for demographic predictio...
收藏 引用
38th European Conference on Information Retrieval Research, ECIR 2016
作者: Wang, Pengfei Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Beijing China
Demographic attributes are important resources for market analysis, which are widely used to characterize different types of users. However, such signals are only available for a small fraction of users due to the dif... 详细信息
来源: 评论
An ensemble method for job recommender systems  10
An ensemble method for job recommender systems
收藏 引用
10th ACM Conference on Recommender Systems Challenge, RecSys Challenge 2016
作者: Zhang, Chenrui Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
In this paper, we present an ensemble method for job recommendation to ACM RecSys Challenge 2016. Given a user, the goal of a job recommendation system is to predict those job postings that are likely to be relevant t... 详细信息
来源: 评论
Dynamic-K recommendation with personalized decision boundary  23rd
Dynamic-K recommendation with personalized decision boundary
收藏 引用
23rd China conference on Information Retrieval, CCIR 2017
作者: Gao, Yan Guo, Jiafeng Lan, Yanyan Liao, Huaming CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
In this paper, we investigate the recommendation task in the most common scenario with implicit feedback (e.g., clicks, purchases). State-of-the-art methods in this direction usually cast the problem as to learn a per... 详细信息
来源: 评论
Trusted Clustering Based Federated Learning in Edge networks
收藏 引用
IEEE Transactions on Mobile computing 2025年
作者: Liu, Yi-Jing Zhang, Long Li, Xiaoqian Du, Hongyang Feng, Gang Qin, Shuang Wang, Jiacheng University of Electronic Science and Technology of China National Key Lab on Wireless Communications Chengdu China Tsinghua University Sichuan Energy Internet Research Institute Chengdu China University of Hong Kong Department of Electrical and Electronic Engineering Hong Kong Hong Kong Nanyang Technological University College of Computing and Data Science Singapore
Federated learning (FL) is integral to advancing edge intelligence by enabling collaborative machine learning. In FL-empowered edge networks, computing nodes first train local models and then send them to an or multip... 详细信息
来源: 评论
Neural or statistical: An empirical study on language models for Chinese input recommendation on mobile  23rd
Neural or statistical: An empirical study on language models...
收藏 引用
23rd China conference on Information Retrieval, CCIR 2017
作者: Zhang, Hainan Lan, Yanyan Guo, Jiafeng Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Chinese input recommendation plays an important role in alleviating human cost in typing Chinese words, especially in the scenario of mobile applications. The fundamental problem is to predict the conditional probabil... 详细信息
来源: 评论
Beyond Precision: A Study on Recall of Initial Retrieval with Neural Representations  1
收藏 引用
28th China Conference on Information Retrieval, CCIR 2022
作者: Xiao, Yan Fan, Yixing Zhang, Ruqing Guo, Jiafeng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Vocabulary mismatch is a central problem in information retrieval (IR), i.e., the relevant documents may not contain the same (symbolic) terms of the query. Recently, neural representations have shown great success in... 详细信息
来源: 评论
Academic access data analysis for literature recommendation  23rd
Academic access data analysis for literature recommendation
收藏 引用
23rd China conference on Information Retrieval, CCIR 2017
作者: Fan, Yixing Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Academic reading plays an important role in researchers’ daily life. To alleviate the burden of seeking relevant literature from rapidly growing academic repository, different kinds of recommender systems have been i... 详细信息
来源: 评论
Understanding and Improving Neural Ranking Models from a Term Dependence View  15th
Understanding and Improving Neural Ranking Models from a Ter...
收藏 引用
15th Asia Information Retrieval Societies Conference, AIRS 2019
作者: Fan, Yixing Guo, Jiafeng Lan, Yanyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Recently, neural information retrieval (NeuIR) has attracted a lot of interests, where a variety of neural models have been proposed for the core ranking problem. Beyond the continuous refresh of the state-of-the-art ... 详细信息
来源: 评论
RobustPFL: Robust Personalized Federated Learning
收藏 引用
IEEE Transactions on Dependable and Secure computing 2025年
作者: Chen, Guorong Wang, Wei Wu, Yufang Li, Chao Xu, Guangquan Ji, Shouling Li, Tao Shen, Meng Han, Yufei Xi'an Jiaotong University Ministry of Education Key Lab for Intelligent Networks and Network Security Xi'an China Beijing Jiaotong University 3 Shangyuancun Beijing Key Laboratory of Security and Privacy in Intelligent Transportation Beijing100044 China Tianjin University Tianjin Key Laboratory of Advanced Networking College of Intelligence and Computing Tianjin300350 China Zhejiang University College of Computer Science and Technology Hangzhou310027 China ITAI Haihe Lab Tianjin China Nankai University College of Computer Science Tianjin300350 China Beijing Institute of Technology School of Cyberspace Security Beijing100081 China Peng Cheng Laboratory Cyberspace Security Research Center Shenzhen518066 China INRIA Bretagne Rennes35042 France
Conventional federated learning (FL) coordinated by a central server focuses on training a global model and protecting the privacy of clients' training data by storing it locally. However, the statistical heteroge... 详细信息
来源: 评论