咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 372 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 207 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 54 篇 信息与通信工程
    • 35 篇 生物工程
    • 18 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 光学工程
    • 10 篇 电气工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
    • 6 篇 生物医学工程(可授...
    • 5 篇 机械工程
    • 4 篇 安全科学与工程
  • 133 篇 理学
    • 77 篇 数学
    • 36 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 10 篇 化学
    • 9 篇 系统科学
  • 105 篇 管理学
    • 81 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 12 篇 法学
    • 10 篇 社会学
  • 6 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
    • 3 篇 中国语言文学

主题

  • 19 篇 semantics
  • 13 篇 deep learning
  • 11 篇 knowledge graph
  • 11 篇 graph neural net...
  • 10 篇 information retr...
  • 9 篇 convolution
  • 8 篇 generative adver...
  • 8 篇 forecasting
  • 8 篇 training
  • 7 篇 machine learning
  • 6 篇 learning systems
  • 6 篇 computational mo...
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 deep neural netw...
  • 5 篇 signal encoding
  • 5 篇 computational li...
  • 5 篇 natural language...
  • 4 篇 surveys
  • 4 篇 computer archite...

机构

  • 128 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 23 篇 school of comput...
  • 17 篇 data intelligenc...
  • 12 篇 institute for ai...
  • 11 篇 institute of com...
  • 10 篇 key lab. of inte...
  • 10 篇 state key lab of...
  • 9 篇 school of comput...
  • 9 篇 key laboratory o...
  • 7 篇 key lab of intel...
  • 7 篇 peng cheng labor...
  • 7 篇 school of cyber ...
  • 6 篇 data intelligenc...
  • 6 篇 semiconductor ne...
  • 6 篇 alibaba group
  • 5 篇 data intelligenc...
  • 5 篇 institute of inf...
  • 5 篇 key laboratory o...

作者

  • 134 篇 cheng xueqi
  • 103 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 40 篇 shen huawei
  • 35 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 jin xiaolong
  • 28 篇 zhang ruqing
  • 22 篇 cao qi
  • 18 篇 xu jun
  • 17 篇 guan saiping
  • 17 篇 bai long
  • 16 篇 li zixuan
  • 13 篇 xueqi cheng
  • 13 篇 sun xiaoming
  • 10 篇 hou liang
  • 9 篇 huang qingming
  • 9 篇 huang junjie
  • 9 篇 chen wei
  • 8 篇 liu shenghua

语言

  • 353 篇 英文
  • 17 篇 其他
  • 2 篇 中文
检索条件"机构=CAS Key Lab of Network Data Science and Technology Institute of Computing Technology"
372 条 记 录,以下是31-40 订阅
排序:
Modeling topical relevance for multi-turn dialogue generation  29
Modeling topical relevance for multi-turn dialogue generatio...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Zhang, Hainan Lan, Yanyan Pang, Liang Chen, Hongshen Ding, Zhuoye Yin, Dawei CAS Key Lab of Network Data Science and Technology Institute of Computing Technology CAS China *** Beijing China University of Chinese Academy of Sciences China
Topic drift is a common phenomenon in multi-turn dialogue. Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appro... 详细信息
来源: 评论
ICTNET at TREC 2019 Deep Learning Track  28
ICTNET at TREC 2019 Deep Learning Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participated in the Deep Learning Track at TREC 2019. We built a ranking system which combines a search component based on BM25 and a semantic matching component using pretraining knowledge. Our best run achieves N... 详细信息
来源: 评论
ICTNET at Trec 2019 Incident Streams Track  28
ICTNET at Trec 2019 Incident Streams Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Guangsheng, Kuang Kun, Zhang Jiabao, Zhang Xin, Zheng University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
Social medial become our public ways to share our information in our lives. Crisis management via social medial is becoming indispensable for its tremendous information. While deep learning shows surprising outcome in... 详细信息
来源: 评论
Sparse Word Embeddings Using 1 Regularized Online Learning
Sparse Word Embeddings Using 1 Regularized Online Learning
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Sun, Fei Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
Recently, Word2Vec tool has attracted a lot of interest for its promising performances in a variety of natural language processing (NLP) tasks. However, a critical issue is that the dense word representations learned ... 详细信息
来源: 评论
ICTNET at TREC 2019 News Track  28
ICTNET at TREC 2019 News Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ding, Yuyang Lian, Xiaoying Zhou, Houquan Liu, Zhaoge Ding, Hanxing Hou, Zhongni University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
This paper describes our work in the background linking task and entity ranking task in TREC 2018 News Track. We explore four methods in background linking task and two methods in entity ranking task. All of our metho...
来源: 评论
ICTNET at TREC 2019 Complex Answer Retrieval Track  28
ICTNET at TREC 2019 Complex Answer Retrieval Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ren, Hongfei Xiong, Ruibin Zeng, Yutao Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participate in the Complex Answer Retrieval(CAR) track at TREC 2019. We applied several useful models in this work. In the rough ranking, we applied doc2query model to predict queries and retrieve using BM25. In th...
来源: 评论
Virtual node based adaptive routing in wireless ad hoc networks
收藏 引用
中国高等学校学术文摘·计算机科学 2009年 第4期3卷 535-542页
作者: Gang LI Hongmei SUN Key Lab of Network Science and Technology Institute of Computing TechnologyChinese Academy of SciencesBeijing 100080China Communications Technology Lab Intel China Research CenterBeijing 100080China
It is a challenge to make the routes quickly adapt to the changed network topology when nodes fail in a wireless ad hoc *** this paper,we propose an adaptive routing protocol,which groups the network nodes into virtua... 详细信息
来源: 评论
Evaluating natural language generation via unbalanced optimal transport  29
Evaluating natural language generation via unbalanced optima...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Chen, Yimeng Lan, Yanyan Xiong, Ruibin Pang, Liang Ma, Zhiming Cheng, Xueqi University of Chinese Academy of Sciences China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology CAS China Academy of Mathematics and Systems Science CAS China
Embedding-based evaluation measures have shown promising improvements on the correlation with human judgments in natural language generation. In these measures, various intrinsic metrics are used in the computation, i... 详细信息
来源: 评论
CausalDiff: Causality-Inspired Disentanglement via Diffusion Model for Adversarial Defense  38
CausalDiff: Causality-Inspired Disentanglement via Diffusion...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zhang, Mingkun Bi, Keping Chen, Wei Chen, Quanrun Guo, Jiafeng Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China Key Laboratory of Network Data Science and Technology Institute of Computing Technology CAS China School of Statistics University of International Business and Economics China
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we ma...
来源: 评论
Match-SRNN: Modeling the recursive matching structure with spatial RNN  25
Match-SRNN: Modeling the recursive matching structure with s...
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Wan, Shengxian Lan, Yanyan Xu, Jun Guo, Jiafeng Pang, Liang Xueqi, Cheng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Semantic matching, which aims to determine the matching degree between two texts, is a fundamental problem for many NLP applications. Recently, deep learning approach has been applied to this problem and significant i... 详细信息
来源: 评论