咨询与建议

限定检索结果

文献类型

  • 24 篇 会议
  • 22 篇 期刊文献

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 工学
    • 26 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 7 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 网络空间安全
    • 1 篇 光学工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物工程
  • 17 篇 管理学
    • 14 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 15 篇 理学
    • 10 篇 数学
    • 5 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 1 篇 生物学
    • 1 篇 系统科学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 4 篇 semantics
  • 2 篇 contrastive lear...
  • 2 篇 embeddings
  • 2 篇 image classifica...
  • 1 篇 computer science
  • 1 篇 object detection
  • 1 篇 collaborative fi...
  • 1 篇 semantic segment...
  • 1 篇 angular distribu...
  • 1 篇 computational co...
  • 1 篇 textbooks
  • 1 篇 task analysis
  • 1 篇 indexes
  • 1 篇 trees (mathemati...
  • 1 篇 reflection
  • 1 篇 image segmentati...
  • 1 篇 dynamic walk
  • 1 篇 computational ne...
  • 1 篇 image edge detec...
  • 1 篇 contact trace

机构

  • 12 篇 school of comput...
  • 9 篇 key lab. of inte...
  • 8 篇 peng cheng labor...
  • 8 篇 school of cyber ...
  • 7 篇 key laboratory o...
  • 5 篇 universidad iber...
  • 5 篇 centro brasileir...
  • 5 篇 technical univer...
  • 5 篇 cukurova univers...
  • 5 篇 brunel universit...
  • 5 篇 lappeenranta uni...
  • 5 篇 yerevan physics ...
  • 5 篇 academy of scien...
  • 5 篇 institut für hoc...
  • 5 篇 institute of inf...
  • 5 篇 institute for nu...
  • 5 篇 national scienti...
  • 5 篇 dsm/irfu cea/sac...
  • 5 篇 sungkyunkwan uni...
  • 5 篇 imperial college...

作者

  • 17 篇 huang qingming
  • 11 篇 xu qianqian
  • 9 篇 cao xiaochun
  • 8 篇 yang zhiyong
  • 6 篇 wang zitai
  • 5 篇 jiang shuqiang
  • 5 篇 liu jun
  • 4 篇 t. miceli
  • 4 篇 g. tonelli
  • 4 篇 k. sogut
  • 4 篇 d. barney
  • 4 篇 t. danielson
  • 4 篇 e. casimiro lina...
  • 4 篇 w. busza
  • 4 篇 m. de gruttola
  • 4 篇 s. carrillo more...
  • 4 篇 p. eerola
  • 4 篇 a. garcia-bellid...
  • 4 篇 m. zielinski
  • 4 篇 n. cartiglia

语言

  • 44 篇 英文
  • 2 篇 其他
检索条件"机构=CAS Key Lab. Network Data Science and Tech."
46 条 记 录,以下是1-10 订阅
排序:
Optimal algorithm for profiling dynamic arrays with finite values  22
Optimal algorithm for profiling dynamic arrays with finite v...
收藏 引用
22nd International Conference on Extending database tech.ology, EDBT 2019
作者: Yang, Dingcheng Yu, Wenjian Deng, Junhui Liu, Shenghua BNRist Dept. Computer Science and Tech. Tsinghua Univ. Beijing China CAS Key Lab. Network Data Science and Tech. Inst. Computing Technology Chinese Academy of Sciences Beijing China
How can one quickly answer the most and top popular objects at any time, given a large log stream in a system of billions of users? It is equivalent to find the mode and top-frequent elements in a dynamic array corres... 详细信息
来源: 评论
A cross-lingual joint aspect/sentiment model for sentiment analysis  14
A cross-lingual joint aspect/sentiment model for sentiment a...
收藏 引用
23rd ACM International Conference on Information and Knowledge Management, CIKM 2014
作者: Lin, Zheng Jin, Xiaolong Xu, Xueke Wang, Yuanzhuo Wang, Weiping Cheng, Xueqi Minzhuang Road Beijing China Key Lab. of Network Data Science and Technology ICT CAS No. 6 Kexueyuan South Road Beijing China
Sentiment analysis in various languages has been a research hotspot with many applications. However, sentiment resources (e.g., lab.led corpora, sentiment lexicons) of different languages are unbalanced in terms of qu... 详细信息
来源: 评论
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation  38
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmenta...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Han, Boyu Xu, Qianqian Yang, Zhiyong Bao, Shilong Wen, Peisong Jiang, Yangbangyan Huang, Qingming Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Peng Cheng Laboratory China Key Laboratory of Big Data Mining and Knowledge Management CAS China
The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performan...
来源: 评论
Context-adaptive matrix factorization for multi-context recommendation  15
Context-adaptive matrix factorization for multi-context reco...
收藏 引用
24th ACM International Conference on Information and Knowledge Management, CIKM 2015
作者: Man, Tong Shen, Huawei Huang, Junming Cheng, Xueqi CAS Key Lab. of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China CompleX Lab. Web Sciences Center University of Electronic Science and Technology of China Chengdu611731 China
data sparsity is a long-standing challenge for recommender systems based on collab.rative filtering. A promising solution for this problem is multi-context recommendation, i.e., leveraging users' explicit or impli... 详细信息
来源: 评论
On the optimality of tape merge of two lists with similar size  27
On the optimality of tape merge of two lists with similar si...
收藏 引用
27th International Symposium on Algorithms and Computation, ISAAC 2016
作者: Li, Qian Sun, Xiaoming Zhang, Jialin CAS Key Lab. of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
The problem of merging sorted lists in the least number of pairwise comparisons has been solved completely only for a few special cases. Graham and Karp [18] independently discovered that the tape merge algorithm is o... 详细信息
来源: 评论
Learning to identify core term of knowledge unit from short text
Learning to identify core term of knowledge unit from short ...
收藏 引用
2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2012
作者: Tian, Zhenhua Wang, Zhen Liu, Ziqi Xiang, Hengheng Liu, Jun Zheng, Qinghua Shaanxi Province Key Lab. of Satellite and Terrestrial Network Tech. RandD Department of Computer Science and Technology Xi'An Jiaotong University Shaanxi 710049 China
We present a new task of identifying core term (CT) of knowledge unit (KU) from text for knowledge management and service. Two kinds of approaches, including binary classification using naïve bayesian, decision t... 详细信息
来源: 评论
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation tech.iques  38
Suppress Content Shift: Better Diffusion Features via Off-th...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Yang, Zhiyong Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Computer Science and Tech. University of Chinese Academy of Sciences China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features  38
Not All Diffusion Model Activations Have Been Evaluated as D...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task...
来源: 评论
Analysis of the paragraph vector model for information retrieval  16
Analysis of the paragraph vector model for information retri...
收藏 引用
2016 ACM International Conference on the Theory of Information Retrieval, ICTIR 2016
作者: Ai, Qingyao Yang, Liu Guo, Jiafeng Croft, W. Bruce College of Information and Computer Sciences University of Massachusetts Amherst AmherstMA United States CAS Key Lab. of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
Previous studies have shown that semantically meaningful representations of words and text can be acquired through neural embedding models. In particular, paragraph vector (PV) models have shown impressive performance... 详细信息
来源: 评论
Modeling parameter interactions in ranking SVM  15
Modeling parameter interactions in ranking SVM
收藏 引用
24th ACM International Conference on Information and Knowledge Management, CIKM 2015
作者: Zhang, Yaogong Xu, Jun Lan, Yanyan Guo, Jiafeng Xie, Maoqiang Huang, Yalou Cheng, Xueqi College of Computer and Control Engineering Nankai University China CAS Key Lab. of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China College of Software Nankai University China
Ranking SVM, which formalizes the problem of learning a ranking model as that of learning a binary SVM on preference pairs of documents, is a state-of-the-art ranking model in information retrieval. The dual form solu... 详细信息
来源: 评论