咨询与建议

限定检索结果

文献类型

  • 90 篇 期刊文献
  • 42 篇 会议

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 90 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 15 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 4 篇 电气工程
    • 4 篇 土木工程
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
    • 4 篇 网络空间安全
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 39 篇 管理学
    • 32 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
  • 23 篇 理学
    • 11 篇 数学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 2 篇 化学
    • 1 篇 天文学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 5 篇 training
  • 3 篇 modeling languag...
  • 3 篇 recommender syst...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...
  • 2 篇 computational mo...

机构

  • 74 篇 university of ch...
  • 30 篇 cas key laborato...
  • 17 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 9 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 6 篇 university of ca...
  • 6 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 baidu inc.
  • 4 篇 cas key laborato...
  • 3 篇 key lab of ai sa...

作者

  • 68 篇 cheng xueqi
  • 54 篇 shen huawei
  • 35 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 13 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 xu jun
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 shan shiguang
  • 6 篇 hou liang

语言

  • 98 篇 英文
  • 33 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
132 条 记 录,以下是1-10 订阅
排序:
Teaching-Inspired Integrated Prompting Framework: A Novel Approach for Enhancing Reasoning in Large Language Models  31
Teaching-Inspired Integrated Prompting Framework: A Novel Ap...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Tan, Wenting Chen, Dongxiao Xue, Jieting Wang, Zihao Chen, Taijie Key Laboratory of AI Safety Institute of Computing Technology CAS China NetEase Youdao The University of Hong Kong Hong Kong
Large Language Models (LLMs) exhibit impressive performance across various domains but still struggle with arithmetic reasoning tasks. Recent work shows the effectiveness of prompt design methods in enhancing reasonin... 详细信息
来源: 评论
Confidence Aware Learning for Reliable Face Anti-spoofing
收藏 引用
IEEE Transactions on Information Forensics and Security 2025年 20卷 5083-5093页
作者: Long, Xingming Zhang, Jie Shan, Shiguang Key Laboratory of AI Safety of CAS Institute of Computing Technology (ICT) Chinese Academy of Sciences (CAS) Beijing China University of Chinese Academy of Sciences (UCAS) Beijing China
Current Face Anti-spoofing (FAS) models tend to make overly confident predictions even when encountering unfamiliar scenarios or unknown presentation attacks, which leads to serious potential risks. To solve this prob... 详细信息
来源: 评论
Precise Integral in NeRFs: Overcoming the Approximation Errors of Numerical Quadrature
Precise Integral in NeRFs: Overcoming the Approximation Erro...
收藏 引用
2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
作者: Zhang, Boyuan He, Zhenliang Kan, Meina Shan, Shiguang Institute of Computing Technology Cas Key Lab of Ai Safety China University of Chinese Academy of Sciences China
Neural Radiance Fields (NeRFs) use neural networks to translate spatial coordinates to corresponding volume density and directional radiance, enabling realistic novel view synthesis through volume rendering. Rendering... 详细信息
来源: 评论
"Not Aligned" is Not "Malicious": Being Careful about Hallucinations of Large Language Models' Jailbreak  31
"Not Aligned" is Not "Malicious": Being Careful about Halluc...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Mei, Lingrui Liu, Shenghua Wang, Yiwei Bi, Baolong Mao, Jiayi Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China University of Chinese Academy of Sciences China UCLA United States University of California Merced United States Tsinghua University China
"Jailbreak" is a major safety concern of Large Language Models (LLMs), which occurs when malicious prompts lead LLMs to produce harmful outputs, raising issues about the reliability and safety of LLMs. There... 详细信息
来源: 评论
LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework  25
LOGIN: A Large Language Model Consulted Graph Neural Network...
收藏 引用
18th ACM International Conference on Web Search and Data Mining, WSDM 2025
作者: Qiao, Yiran Ao, Xiang Liu, Yang Xu, Jiarong Sun, Xiaoqian He, Qing Institute of Computing Technology CAS Beijing China Key Lab of AI Safety Chinese Academy of Sciences Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences CAS Beijing China School of Management Fudan University Shanghai China Institute of Intelligent Computing Technology Suzhou China
Recent prevailing works on graph machine learning typically follow a similar methodology that involves designing advanced variants of graph neural networks (GNNs) to maintain the superior performance of GNNs on differ... 详细信息
来源: 评论
ELabrador: A Wearable Navigation System for Visually Impaired Individuals
收藏 引用
IEEE Transactions on Automation Science and Engineering 2025年 22卷 12228-12244页
作者: Kan, Meina Zhang, Lixuan Liang, Hao Zhang, Boyuan Fang, Minxue Liu, Dongyang Shan, Shiguang Chen, Xilin Institute of Computing Technology Chinese Academy of Sciences State Key Laboratory of Ai Safety Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Peng Cheng National Laboratory Shenzhen518055 China
Visually impaired individuals encounter significant challenges when walking and acting in unfamiliar environments, particularly in outdoor scenarios. The complexity of outdoor environments, characterized by diverse ob... 详细信息
来源: 评论
SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks  34
SPEAR: A Structure-Preserving Manipulation Method for Graph ...
收藏 引用
34th ACM Web Conference, WWW 2025
作者: Ding, Yuanhao Liu, Yang Ji, Yugang Wen, Weigao He, Qing Ao, Xiang Institute of Computing Technology Chinese Academy of Sciences Beijing China Hangzhou China Key Laboratory of AI Safety Chinese Academy of Sciences China Institute of Intelligent Computing Technology CAS Suzhou China University of Chinese Academy of Sciences CAS China
Graph Neural Networks (GNNs) are vulnerable to backdoor attacks, where adversaries implant malicious triggers to manipulate model predictions. Existing graph backdoor attacks are susceptible to defense mechanisms or r... 详细信息
来源: 评论
Personalized Denoising Implicit Feedback for Robust Recommender System
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
While implicit feedback is foundational to modern recommender systems, factors such as human error, uncertainty, and ambiguity in user behavior inevitably introduce significant noise into this feedback, adversely affe... 详细信息
来源: 评论
Personalized Denoising Implicit Feedback for Robust Recommender System  34
Personalized Denoising Implicit Feedback for Robust Recommen...
收藏 引用
34th ACM Web Conference, WWW 2025
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
While implicit feedback is foundational to modern recommender systems, factors such as human error, uncertainty, and ambiguity in user behavior inevitably introduce significant noise into this feedback, adversely affe... 详细信息
来源: 评论
Unifying Bias and Unfairness in Information Retrieval: New Challenges in the LLM Era  25
Unifying Bias and Unfairness in Information Retrieval: New C...
收藏 引用
18th ACM International Conference on Web Search and Data Mining, WSDM 2025
作者: Dai, Sunhao Xu, Chen Xu, Shicheng Pang, Liang Dong, Zhenhua Xu, Jun Gaoling School of Artificial Intelligence Renmin University of China Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China Huawei Noah's Ark Lab Shenzhen China
With the rapid advancements of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a paradigm shift due to their integration. However, integ... 详细信息
来源: 评论