咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 43 篇 会议

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 87 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 4 篇 土木工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
    • 1 篇 交通运输工程
  • 36 篇 管理学
    • 29 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 20 篇 理学
    • 10 篇 数学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 天文学
    • 1 篇 系统科学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 3 篇 modeling languag...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 benchmark testin...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 recommender syst...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...

机构

  • 74 篇 university of ch...
  • 30 篇 cas key laborato...
  • 18 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 8 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 6 篇 university of ca...
  • 6 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 school of artifi...
  • 4 篇 baidu inc.
  • 4 篇 cas key laborato...

作者

  • 68 篇 cheng xueqi
  • 54 篇 shen huawei
  • 34 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 12 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 xu jun
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 shan shiguang
  • 6 篇 xueqi cheng

语言

  • 100 篇 英文
  • 31 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
132 条 记 录,以下是1-10 订阅
排序:
GNN-Based Persistent K-core Community Search in Temporal Graphs
GNN-Based Persistent K-core Community Search in Temporal Gra...
收藏 引用
2024 IEEE International Conference on Big Data, BigData 2024
作者: Jiang, Zongli Tan, Yirui Chen, Guoxin Guo, Fangda Zhang, Jinli Bai, Xiaolu Beijing University of Technology Beijing China Institute of Computing Technology Cas University of Chinese Academy of Sciences Key Laboratory of Ai Safety Beijing China Institute of Computing Technology Cas Key Laboratory of Ai Safety Beijing China
The goal of community search is to provide effective solutions for real-time, high-quality community searches within large networks. In many practical applications, such as event organization and friend recommendation... 详细信息
来源: 评论
CausalDiff: Causality-Inspired Disentanglement via Diffusion Model for Adversarial Defense  38
CausalDiff: Causality-Inspired Disentanglement via Diffusion...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zhang, Mingkun Bi, Keping Chen, Wei Chen, Quanrun Guo, Jiafeng Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China Key Laboratory of Network Data Science and Technology Institute of Computing Technology CAS China School of Statistics University of International Business and Economics China
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we ma...
来源: 评论
Teaching-Inspired Integrated Prompting Framework: A Novel Approach for Enhancing Reasoning in Large Language Models  31
Teaching-Inspired Integrated Prompting Framework: A Novel Ap...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Tan, Wenting Chen, Dongxiao Xue, Jieting Wang, Zihao Chen, Taijie Key Laboratory of AI Safety Institute of Computing Technology CAS China NetEase Youdao The University of Hong Kong Hong Kong
Large Language Models (LLMs) exhibit impressive performance across various domains but still struggle with arithmetic reasoning tasks. Recent work shows the effectiveness of prompt design methods in enhancing reasonin... 详细信息
来源: 评论
Plot Retrieval as an Assessment of Abstract Semantic Association  62
Plot Retrieval as an Assessment of Abstract Semantic Associa...
收藏 引用
62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
作者: Xu, Shicheng Pang, Liang Li, Jiangnan Yu, Mo Meng, Fandong Shen, Huawei Cheng, Xueqi Zhou, Jie CAS Key Laboratory of AI Security Institute of Computing Technology CAS China Pattern Recognition Center WeChat AI
Retrieving relevant plots from the book for a query is a critical task, which can improve the reading experience and efficiency of readers. Readers usually only give an abstract and vague description as the query base... 详细信息
来源: 评论
The Fall of ROME: Understanding the Collapse of LLMs in Model Editing
The Fall of ROME: Understanding the Collapse of LLMs in Mode...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Yang, Wanli Sun, Fei Tan, Jiajun Ma, Xinyu Su, Du Yin, Dawei Shen, Huawei CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China University of Chinese Academy of Sciences China Baidu Inc. China
Despite significant progress in model editing methods, their application in real-world scenarios remains challenging as they often cause large language models (LLMs) to collapse. Among them, ROME is particularly conce... 详细信息
来源: 评论
Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration
Enhancing Training Data Attribution for Large Language Model...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Wu, Kangxi Pang, Liang Shen, Huawei Cheng, Xueqi Key Laboratory of AI Safety Chinese Academy of Sciences Institute of Computing Technology CAS China University of Chinese Academy of Sciences China
The black-box nature of large language models (LLMs) poses challenges in interpreting results, impacting issues such as data intellectual property protection and hallucination tracing. Training data attribution (TDA) ... 详细信息
来源: 评论
Personalized Denoising Implicit Feedback for Robust Recommender System  25
Personalized Denoising Implicit Feedback for Robust Recommen...
收藏 引用
34th ACM Web Conference, WWW 2025
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
While implicit feedback is foundational to modern recommender systems, factors such as human error, uncertainty, and ambiguity in user behavior inevitably introduce significant noise into this feedback, adversely affe... 详细信息
来源: 评论
Understanding and Improving Adversarial Collaborative Filtering for Robust Recommendation  38
Understanding and Improving Adversarial Collaborative Filter...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences Beijing China
Adversarial Collaborative Filtering (ACF), which typically applies adversarial perturbations at user and item embeddings through adversarial training, is widely recognized as an effective strategy for enhancing the ro...
来源: 评论
PKAD: Pretrained Knowledge is All You Need to Detect and Mitigate Textual Backdoor Attacks
PKAD: Pretrained Knowledge is All You Need to Detect and Mit...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Chen, Yu Cao, Qi Zhang, Kaike Liu, Xuchao Shen, Huawei CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences Beijing China
In textual backdoor attacks, attackers insert poisoned samples with triggered inputs and target labels into training datasets to manipulate model behavior, threatening the model's security and reliability. Current... 详细信息
来源: 评论
Precise Integral in NeRFs: Overcoming the Approximation Errors of Numerical Quadrature
Precise Integral in NeRFs: Overcoming the Approximation Erro...
收藏 引用
2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
作者: Zhang, Boyuan He, Zhenliang Kan, Meina Shan, Shiguang Institute of Computing Technology Cas Key Lab of Ai Safety China University of Chinese Academy of Sciences China
Neural Radiance Fields (NeRFs) use neural networks to translate spatial coordinates to corresponding volume density and directional radiance, enabling realistic novel view synthesis through volume rendering. Rendering... 详细信息
来源: 评论