咨询与建议

限定检索结果

文献类型

  • 90 篇 期刊文献
  • 42 篇 会议

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 90 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 15 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 4 篇 电气工程
    • 4 篇 土木工程
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
    • 4 篇 网络空间安全
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 39 篇 管理学
    • 32 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
  • 23 篇 理学
    • 11 篇 数学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 2 篇 化学
    • 1 篇 天文学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 5 篇 training
  • 3 篇 modeling languag...
  • 3 篇 recommender syst...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...
  • 2 篇 computational mo...

机构

  • 74 篇 university of ch...
  • 30 篇 cas key laborato...
  • 17 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 9 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 6 篇 university of ca...
  • 6 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 baidu inc.
  • 4 篇 cas key laborato...
  • 3 篇 key lab of ai sa...

作者

  • 68 篇 cheng xueqi
  • 54 篇 shen huawei
  • 35 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 13 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 xu jun
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 shan shiguang
  • 6 篇 hou liang

语言

  • 98 篇 英文
  • 33 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
132 条 记 录,以下是91-100 订阅
排序:
A THEORY FOR TOKEN-LEVEL HARMONIZATION IN RETRIEVAL-AUGMENTED GENERATION
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Shicheng Pang, Liang Shen, Huawei Cheng, Xueqi Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs). Studies show that while RAG provides valuable external information (benefit), it may also mislead LLMs (detriment)... 详细信息
来源: 评论
MITA: Bridging the Gap between Model and Data for Test-time Adaptation
arXiv
收藏 引用
arXiv 2024年
作者: Yuan, Yige Xu, Bingbing Xiao, Teng Hou, Liang Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Pennsylvania State University United States Kuaishou Technology China
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models. However, existing mainstream TTA methods, predominantly operating at batch level, often exhibit suboptimal p... 详细信息
来源: 评论
Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Yuqi Dai, Sunhao Pang, Liang Wang, Gang Dong, Zhenhua Xu, Jun Wen, Ji-Rong Gaoling School of Artificial Intelligence Renmin University of China Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology CAS Beijing China Huawei Noah’s Ark Lab Shenzhen China
Recently, researchers have uncovered that neural retrieval models prefer ai-generated content (aiGC), called source bias [10, 40]. Compared to active search behavior, recommendation represents another important means ... 详细信息
来源: 评论
Context Graph
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Chengjin Li, Muzhi Yang, Cehao Jiang, Xuhui Tang, Lumingyuan Qi, Yiyan Guo, Jian IDEA Research International Digital Economy Academy China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China
Knowledge Graphs (KGs) are foundational structures in many ai applications, representing entities and their interrelations through triples. However, triple-based KGs lack the contextual information of relational knowl... 详细信息
来源: 评论
F2GNN: An Adaptive Filter with Feature Segmentation for Graph-Based Fraud Detection
F2GNN: An Adaptive Filter with Feature Segmentation for Grap...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (IcasSP)
作者: Guanghui Hu Yang Liu Qing He Xiang Ao Henan Institute of Advanced Technology Zhengzhou University Zhengzhou P.R. China Key Laboratory of AI Safety & Security Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China CASMINO Ltd. Suzhou China
Graph Neural Networks (GNNs) have received remarkable success in identifying fraudulent activities on graphs. Most approaches leverage the full user feature together and aggregate the messages from its neighbors by a ...
来源: 评论
The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Wanli Sun, Fei Ma, Xinyu Liu, Xun Yin, Dawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China
Although model editing has shown promise in revising knowledge in Large Language Models (LLMs), its impact on the inherent capabilities of LLMs is often overlooked. In this work, we reveal a critical phenomenon: even ... 详细信息
来源: 评论
Query-centric Audio-Visual Cognition Network for Moment Retrieval, Segmentation and Step-Captioning
arXiv
收藏 引用
arXiv 2024年
作者: Tu, Yunbin Li, Liang Su, Li Huang, Qingming School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Key Laboratory of AI Safety of CAS Institute of Computing Technology Chinese Academy of Sciences Beijing China Peng Cheng Laboratory Shenzhen China
Video has emerged as a favored multimedia format on the internet. To better gain video contents, a new topic HIREST is presented, including video retrieval, moment retrieval, moment segmentation, and step-captioning. ... 详细信息
来源: 评论
SecMdp: Towards Privacy-Preserving Multimodal Deep Learning in End-Edge-Cloud
SecMdp: Towards Privacy-Preserving Multimodal Deep Learning ...
收藏 引用
International Conference on Data Engineering
作者: Zhao Bai Mingyue Wang Fangda Guo Yu Guo Chengjun Cai Rongfang Bie Xiaohua Jia Beijing Normal University Harbin Institute of Technology CAS Key Laboratory of AI Safety & Security Institute of Computing Technology Chinese Academy of Sciences City University of Hong Kong Dongguan Research Institute City University of Hong Kong
Multimodal deep learning technologies have advanced significantly, which brings extensive applications in diverse fields. The substantial computational demands of training and prediction in multimodal deep learning ha... 详细信息
来源: 评论
STRUEDIT: Structured Outputs Enable the Fast and Accurate Knowledge Editing for Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Bi, Baolong Liu, Shenghua Wang, Yiwei Mei, Lingrui Gao, Hongcheng Fang, Junfeng Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China University of California Los Angeles United States Hefei China
As the modern tool of choice for question answering, large language models (LLMs) are expected to deliver answers with up-to-date knowledge. To achieve such ideal question-answering systems, locating and then editing ... 详细信息
来源: 评论
SACH: Significant-Attributed Community Search in Heterogeneous Information Networks
SACH: Significant-Attributed Community Search in Heterogeneo...
收藏 引用
International Conference on Data Engineering
作者: Yanghao Liu Fangda Guo Bingbing Xu Peng Bao Huawei Shen Xueqi Cheng CAS Key Laboratory of AI Safety & Security Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Beijing Jiaotong University Beijing China
Community search is a personalized community discovery problem aimed at finding densely-connected subgraphs containing the query vertex. In particular, the search for com-munities with high-importance vertices has rec... 详细信息
来源: 评论