咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 43 篇 会议

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 87 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 4 篇 土木工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
    • 1 篇 交通运输工程
  • 36 篇 管理学
    • 29 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 20 篇 理学
    • 10 篇 数学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 天文学
    • 1 篇 系统科学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 3 篇 modeling languag...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 benchmark testin...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 recommender syst...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...

机构

  • 74 篇 university of ch...
  • 30 篇 cas key laborato...
  • 18 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 8 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 6 篇 university of ca...
  • 6 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 school of artifi...
  • 4 篇 baidu inc.
  • 4 篇 cas key laborato...

作者

  • 68 篇 cheng xueqi
  • 54 篇 shen huawei
  • 34 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 12 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 xu jun
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 shan shiguang
  • 6 篇 xueqi cheng

语言

  • 100 篇 英文
  • 31 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
132 条 记 录,以下是21-30 订阅
排序:
Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue
Think Before You Speak: Cultivating Communication Skills of ...
收藏 引用
2024 Findings of the Association for Computational Linguistics: NAACL 2024
作者: Zhou, Junkai Pang, Liang Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Security Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
The emergence of large language models (LLMs) further improves the capabilities of open-domain dialogue systems and can generate fluent, coherent, and diverse responses. However, LLMs still lack a crucial ability: com... 详细信息
来源: 评论
Understanding and improving adversarial collaborative filtering for robust recommendation  24
Understanding and improving adversarial collaborative filter...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Kaike Zhang Qi Cao Yunfan Wu Fei Sun Huawei Shen Xueqi Cheng CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences
Adversarial Collaborative Filtering (ACF), which typically applies adversarial perturbations at user and item embeddings through adversarial training, is widely recognized as an effective strategy for enhancing the ro...
来源: 评论
CausalDiff: causality-inspired disentanglement via diffusion model for adversarial defense  24
CausalDiff: causality-inspired disentanglement via diffusion...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Mingkun Zhang Keping Bi Wei Chen Quanrun Chen Jiafeng Guo Xueqi Cheng CAS Key Laboratory of AI Safety Institute of Computing Technology CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology CAS School of Statistics University of International Business and Economics
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we ma...
来源: 评论
PDE+: Enhancing Generalization via PDE with Adaptive Distributional Diffusion  38
PDE+: Enhancing Generalization via PDE with Adaptive Distrib...
收藏 引用
38th AAai Conference on Artificial Intelligence, AAai 2024
作者: Yuan, Yige Xu, Bingbing Lin, Bo Hou, Liang Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety & Security Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Department of Mathematics National University of Singapore Singapore
The generalization of neural networks is a central challenge in machine learning, especially concerning the performance under distributions that differ from training ones. Current methods, mainly based on the data-dri... 详细信息
来源: 评论
Personalized Denoising Implicit Feedback for Robust Recommender System
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
While implicit feedback is foundational to modern recommender systems, factors such as human error, uncertainty, and ambiguity in user behavior inevitably introduce significant noise into this feedback, adversely affe... 详细信息
来源: 评论
Enhancing Stance Detection on Social Media via Core Views Discovery  27
Enhancing Stance Detection on Social Media via Core Views Di...
收藏 引用
27th European Conference on Artificial Intelligence, ECai 2024
作者: Yan, Yu Shen, Yinghan Liu, Teli Jiang, Xuhui Yin, Dechun School of Information and Network Security People Public Security University of China China Institute of Computing Technology Chinese Academy of Sciences China Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China
Stance detection aims to identify the expressed attitude towards a target from the text, which is significant for learning public cognition from social media. The short and implicit nature of social media users' e... 详细信息
来源: 评论
Rethinking the Evaluation of In-Context Learning for LLMs
Rethinking the Evaluation of In-Context Learning for LLMs
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Yu, Guoxin Liu, Lemao Yu, Mo Yu, Yue Ao, Xiang Institute of Computing Technology CAS Beijing100190 China Peng Cheng Laboratory Shenzhen China University of Chinese Academy of Sciences Beijing100049 China Wechat AI Tencent China Key Lab of AI Safety Chinese Academy of Sciences Beijing100094 China
In-context learning (ICL) has demonstrated excellent performance across various downstream NLP tasks, especially when synergized with powerful large language models (LLMs). Existing studies evaluate ICL methods primar... 详细信息
来源: 评论
Confidence Aware Learning for Reliable Face Anti-spoofing
收藏 引用
IEEE Transactions on Information Forensics and Security 2025年 20卷 5083-5093页
作者: Long, Xingming Zhang, Jie Shan, Shiguang Key Laboratory of AI Safety of CAS Institute of Computing Technology (ICT) Chinese Academy of Sciences (CAS) Beijing China University of Chinese Academy of Sciences (UCAS) Beijing China
Current Face Anti-spoofing (FAS) models tend to make overly confident predictions even when encountering unfamiliar scenarios or unknown presentation attacks, which leads to serious potential risks. To solve this prob... 详细信息
来源: 评论
GNN-Based Persistent K-core Community Search in Temporal Graphs
GNN-Based Persistent K-core Community Search in Temporal Gra...
收藏 引用
IEEE International Conference on Big Data
作者: Zongli Jiang Yirui Tan Guoxin Chen Fangda Guo Jinli Zhang Xiaolu Bai Computer Science and Technology Beijing University of Technology Beijing China Key Laboratory of AI Safety Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China Key Laboratory of AI Safety Institute of Computing Technology CAS Beijing China
The goal of community search is to provide effective solutions for real-time, high-quality community searches within large networks. In many practical applications, such as event organization and friend recommendation... 详细信息
来源: 评论
Negative as Positive: Enhancing Out-of-distribution Generalization for Graph Contrastive Learning
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Zixu Xu, Bingbing Yuan, Yige Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
Graph contrastive learning (GCL), standing as the dominant paradigm in the realm of graph pre-training, has yielded considerable progress. Nonetheless, its capacity for out-of-distribution (OOD) generalization has bee...
来源: 评论