咨询与建议

限定检索结果

文献类型

  • 90 篇 期刊文献
  • 42 篇 会议

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 90 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 15 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 4 篇 电气工程
    • 4 篇 土木工程
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
    • 4 篇 网络空间安全
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 39 篇 管理学
    • 32 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
  • 23 篇 理学
    • 11 篇 数学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 2 篇 化学
    • 1 篇 天文学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 5 篇 training
  • 3 篇 modeling languag...
  • 3 篇 recommender syst...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...
  • 2 篇 computational mo...

机构

  • 74 篇 university of ch...
  • 30 篇 cas key laborato...
  • 17 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 9 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 6 篇 university of ca...
  • 6 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 baidu inc.
  • 4 篇 cas key laborato...
  • 3 篇 key lab of ai sa...

作者

  • 68 篇 cheng xueqi
  • 54 篇 shen huawei
  • 35 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 13 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 xu jun
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 shan shiguang
  • 6 篇 hou liang

语言

  • 98 篇 英文
  • 33 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
132 条 记 录,以下是21-30 订阅
排序:
ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Ding, Hanxing Tao, Shuchang Pang, Liang Wei, Zihao Gao, Jinyang Ding, Bolin Shen, Huawei Cheng, Xueqi Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Alibaba Group China
Tool learning has emerged as a crucial capability for large language models (LLMs) to solve complex real-world tasks through interaction with external tools. Existing approaches face significant challenges, including ...
来源: 评论
The 1st Workshop on Human-Centered Recommender Systems  25
The 1st Workshop on Human-Centered Recommender Systems
收藏 引用
Companion Proceedings of the ACM on Web Conference 2025
作者: Kaike Zhang Yunfan Wu Yougang Lyu Du Su Yingqiang Ge Shuchang Liu Qi Cao Zhaochun Ren Fei Sun University of Chinese Academy of Sciences Beijing China University of Amsterdam Amsterdam Netherlands CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China Amazon New Brunswick USA Kuaishou Beijing China Leiden University Leiden Netherlands
Recommender systems are quintessential applications of human-computer interaction. Widely utilized in daily life, they offer significant convenience but also present numerous challenges, such as the information cocoon... 详细信息
来源: 评论
Training a Utility-based Retriever Through Shared Context Attribution for Retrieval-Augmented Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Yilong Gao, Jinhua Yu, Xiaoming Xue, Yuanhai Bi, Baolong Shen, Huawei Cheng, Xueqi State Key Lab of AI Safety Institute of Computing Technology CAS China Key Lab of AI Safety Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Retrieval-Augmented Language Models boost task performance, owing to the retriever that provides external knowledge. Although crucial, the retriever primarily focuses on semantics relevance, which may not always be ef...
来源: 评论
GNN-Based Persistent K-core Community Search in Temporal Graphs
GNN-Based Persistent K-core Community Search in Temporal Gra...
收藏 引用
2024 IEEE International Conference on Big Data, BigData 2024
作者: Jiang, Zongli Tan, Yirui Chen, Guoxin Guo, Fangda Zhang, Jinli Bai, Xiaolu Beijing University of Technology Beijing China Institute of Computing Technology Cas University of Chinese Academy of Sciences Key Laboratory of Ai Safety Beijing China Institute of Computing Technology Cas Key Laboratory of Ai Safety Beijing China
The goal of community search is to provide effective solutions for real-time, high-quality community searches within large networks. In many practical applications, such as event organization and friend recommendation... 详细信息
来源: 评论
Leveraging face-prior knowledge for general face representation learning
收藏 引用
Pattern Recognition 2025年 168卷
作者: Haomiao Sun Mingjie He Shiguang Shan Hu Han State Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China
Face analysis, such as face attribute recognition and expression classification, has achieved remarkable progress via supervised deep learning methods. Although effective, supervised learning relies on a large amount ... 详细信息
来源: 评论
CausalDiff: Causality-Inspired Disentanglement via Diffusion Model for Adversarial Defense  38
CausalDiff: Causality-Inspired Disentanglement via Diffusion...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zhang, Mingkun Bi, Keping Chen, Wei Chen, Quanrun Guo, Jiafeng Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China Key Laboratory of Network Data Science and Technology Institute of Computing Technology CAS China School of Statistics University of International Business and Economics China
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we ma...
来源: 评论
Decoupled Doubly Contrastive Learning for Cross Domain Facial Action Unit Detection
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yong Liu, Menglin Cui, Zhen Ding, Yi Zong, Yuan Zheng, Wenming Shan, Shiguang Guan, Cuntai School of Computer Science and Engineering The Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications Southeast University Nanjing210096 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China School of Artificial Intelligence Beijing Normal University Beijing100875 China Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China School of Computer Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore639798 Singapore Key Laboratory of Child Development and Learning Science of Ministry of Education School of Biological Science and Medical Engineering Nanjing210096 China
Despite the impressive performance of current vision-based facial action unit (AU) detection approaches, they are heavily susceptible to the variations across different domains and the cross-domain AU detection method... 详细信息
来源: 评论
PIS: Linking Importance Sampling and Attention Mechanisms for Efficient Prompt Compression
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Lizhe Zhou, Binjia Ge, Yuyao Chen, Jiayi Ni, Shiguang Shenzhen International Graduate School Tsinghua University China Zhejiang University China CAS Key Laboratory of AI Security Institute of Computing Technology Chinese Academy of Sciences China Fudan University China
Large language models (LLMs) have achieved remarkable progress, demonstrating unprecedented capabilities across various natural language processing tasks. However, the high costs associated with such exceptional perfo... 详细信息
来源: 评论
Plot Retrieval as an Assessment of Abstract Semantic Association  62
Plot Retrieval as an Assessment of Abstract Semantic Associa...
收藏 引用
62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
作者: Xu, Shicheng Pang, Liang Li, Jiangnan Yu, Mo Meng, Fandong Shen, Huawei Cheng, Xueqi Zhou, Jie CAS Key Laboratory of AI Security Institute of Computing Technology CAS China Pattern Recognition Center WeChat AI
Retrieving relevant plots from the book for a query is a critical task, which can improve the reading experience and efficiency of readers. Readers usually only give an abstract and vague description as the query base... 详细信息
来源: 评论
The Fall of ROME: Understanding the Collapse of LLMs in Model Editing
The Fall of ROME: Understanding the Collapse of LLMs in Mode...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Yang, Wanli Sun, Fei Tan, Jiajun Ma, Xinyu Su, Du Yin, Dawei Shen, Huawei CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China University of Chinese Academy of Sciences China Baidu Inc. China
Despite significant progress in model editing methods, their application in real-world scenarios remains challenging as they often cause large language models (LLMs) to collapse. Among them, ROME is particularly conce... 详细信息
来源: 评论