咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 43 篇 会议

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 87 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 4 篇 土木工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
    • 1 篇 交通运输工程
  • 36 篇 管理学
    • 29 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 20 篇 理学
    • 10 篇 数学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 天文学
    • 1 篇 系统科学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 3 篇 modeling languag...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 benchmark testin...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 recommender syst...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...

机构

  • 74 篇 university of ch...
  • 30 篇 cas key laborato...
  • 18 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 8 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 6 篇 university of ca...
  • 6 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 school of artifi...
  • 4 篇 baidu inc.
  • 4 篇 cas key laborato...

作者

  • 68 篇 cheng xueqi
  • 54 篇 shen huawei
  • 34 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 12 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 xu jun
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 shan shiguang
  • 6 篇 xueqi cheng

语言

  • 100 篇 英文
  • 31 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
132 条 记 录,以下是31-40 订阅
排序:
Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
Recommender systems play a pivotal role in mitigating information overload in various fields. Nonetheless, the inherent openness of these systems introduces vulnerabilities, allowing attackers to insert fake users int... 详细信息
来源: 评论
LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
Sequential recommender systems stand out for their ability to capture users’ dynamic interests and the patterns of item transitions. However, the inherent openness of sequential recommender systems renders them vulne... 详细信息
来源: 评论
SecMdp: Towards Privacy-Preserving Multimodal Deep Learning in End-Edge-Cloud  40
SecMdp: Towards Privacy-Preserving Multimodal Deep Learning ...
收藏 引用
40th IEEE International Conference on Data Engineering, ICDE 2024
作者: Bai, Zhao Wang, Mingyue Guo, Fangda Guo, Yu Cai, Chengjun Bie, Rongfang Jia, Xiaohua Beijing Normal University China Harbin Institute of Technology China Institute of Computing Technology CAS Key Laboratory of AI Safety & Security Chinese Academy of Sciences China City University of Hong Kong Dongguan Research Institute Hong Kong City University of Hong Kong Hong Kong
Multimodal deep learning technologies have advanced significantly, which brings extensive applications in diverse fields. The substantial computational demands of training and prediction in multimodal deep learning ha... 详细信息
来源: 评论
Generative Ghost: Investigating Ranking Bias Hidden in ai-Generated Videos
arXiv
收藏 引用
arXiv 2025年
作者: Gao, Haowen Pang, Liang Xu, Shicheng Qu, Leigang Chua, Tat-Seng Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China Sea-NExT Joint Lab National University of Singapore Singapore CAS Key Laboratory of AI Security Institute of Computing Technology Chinese Academy of Sciences China
With the rapid development of ai-generated content (aiGC), the creation of high-quality ai-generated videos has become faster and easier, resulting in the Internet being flooded with all kinds of video content. Howeve... 详细信息
来源: 评论
Graph Domain Adaptation: Challenges, Progress and Prospects
arXiv
收藏 引用
arXiv 2024年
作者: Shi, Boshen Wang, Yongqing Guo, Fangda Xu, Bingbing Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety&Security Institute of Computing Technology CAS China University of Chinese Academy of Sciences China
As graph representation learning often suffers from label scarcity problems in real-world applications, researchers have proposed graph domain adaptation (GDA) as an effective knowledge-transfer paradigm across graphs... 详细信息
来源: 评论
When to Trust LLMs: Aligning Confidence with Response Quality
arXiv
收藏 引用
arXiv 2024年
作者: Tao, Shuchang Yao, Liuyi Ding, Hanxing Xie, Yuexiang Cao, Qi Sun, Fei Gao, Jinyang Shen, Huawei Ding, Bolin Alibaba Group China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China
Despite the success of large language models (LLMs) in natural language generation, much evidence shows that LLMs may produce incorrect or nonsensical text. This limitation highlights the importance of discerning when... 详细信息
来源: 评论
The Mirage of Model Editing: Revisiting Evaluation in the Wild
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Wanli Sun, Fei Tan, Jiajun Ma, Xinyu Cao, Qi Yin, Dawei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China University of Chinese Academy of Sciences China Baidu Inc. China
Despite near-perfect results in artificial evaluations, the effectiveness of model editing in real-world applications remains unexplored. To bridge this gap, we propose to study model editing in question answering (QA...
来源: 评论
Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Shicheng Pang, Liang Yu, Mo Meng, Fandong Shen, Huawei Cheng, Xueqi Zhou, Jie CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China University of Chinese Academy of Sciences China Pattern Recognition Center WeChat AI China
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating additional information from retrieval. However, studies have shown that LLMs still face challenges in effectively using the r... 详细信息
来源: 评论
CLIPURE: PURIFICATION IN LATENT SPACE VIA CLIP FOR ADVERSARIALLY ROBUST ZERO-SHOT CLASSIFICATION
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Mingkun Bi, Keping Chen, Wei Guo, Jiafeng Cheng, Xueqi State Key Lab of AI Safety CAS Key Lab of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
In this paper, we aim to build an adversarially robust zero-shot image classifier. We ground our work on CLIP, a vision-language pre-trained encoder model that can perform zero-shot classification by matching an image... 详细信息
来源: 评论
Label Noise Correction for Federated Learning: A Secure, Efficient and Reliable Realization  40
Label Noise Correction for Federated Learning: A Secure, Eff...
收藏 引用
40th IEEE International Conference on Data Engineering, ICDE 2024
作者: Wang, Haodi Jiang, Tangyu Guo, Yu Guo, Fangda Bie, Rongfang Jia, Xiaohua School of Artificial Intelligence Beijing Normal University Beijing China Institute of Computing Technology Chinese Academy of Sciences CAS Key Laboratory of AI Safety & Security Beijing China City University of Hong Kong Department of Computer Science Hong Kong Hong Kong
Federated learning has emerged as a promising paradigm for large-scale collaborative training tasks, harnessing diverse local datasets from different clients to jointly train global models. In real-world implementatio... 详细信息
来源: 评论