咨询与建议

限定检索结果

文献类型

  • 90 篇 期刊文献
  • 42 篇 会议

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 90 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 15 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 4 篇 电气工程
    • 4 篇 土木工程
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
    • 4 篇 网络空间安全
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 39 篇 管理学
    • 32 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
  • 23 篇 理学
    • 11 篇 数学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 2 篇 化学
    • 1 篇 天文学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 5 篇 training
  • 3 篇 modeling languag...
  • 3 篇 recommender syst...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...
  • 2 篇 computational mo...

机构

  • 74 篇 university of ch...
  • 30 篇 cas key laborato...
  • 17 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 9 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 6 篇 university of ca...
  • 6 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 baidu inc.
  • 4 篇 cas key laborato...
  • 3 篇 key lab of ai sa...

作者

  • 68 篇 cheng xueqi
  • 54 篇 shen huawei
  • 35 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 13 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 xu jun
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 shan shiguang
  • 6 篇 hou liang

语言

  • 98 篇 英文
  • 33 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
132 条 记 录,以下是41-50 订阅
排序:
Search-in-the-Chain: Interactively Enhancing Large Language Models with Search for Knowledge-intensive Tasks  24
Search-in-the-Chain: Interactively Enhancing Large Language ...
收藏 引用
33rd ACM Web Conference, WWW 2024
作者: Xu, Shicheng Pang, Liang Shen, Huawei Cheng, Xueqi Chua, Tat-Seng CAS Key Laboratory of AI Security Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Security Institute of Computing Technology Chinese Academy of Sciences Beijing China Sea-NExT Joint Lab National University of Singapore Singapore Singapore
Making the contents generated by Large Language Model (LLM), accurate, credible and traceable is crucial, especially in complex knowledge-intensive tasks that require multi-step reasoning and each step needs knowledge... 详细信息
来源: 评论
SACH: Significant-Attributed Community Search in Heterogeneous Information Networks  40
SACH: Significant-Attributed Community Search in Heterogeneo...
收藏 引用
40th IEEE International Conference on Data Engineering, ICDE 2024
作者: Liu, Yanghao Guo, Fangda Xu, Bingbing Bao, Peng Shen, Huawei Cheng, Xueqi Institute of Computing Technology CAS Key Laboratory of AI Safety & Security Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Beijing Jiaotong University Beijing China
Community search is a personalized community discovery problem aimed at finding densely-connected subgraphs containing the query vertex. In particular, the search for com-munities with high-importance vertices has rec... 详细信息
来源: 评论
Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue
Think Before You Speak: Cultivating Communication Skills of ...
收藏 引用
2024 Findings of the Association for Computational Linguistics: NAACL 2024
作者: Zhou, Junkai Pang, Liang Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Security Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
The emergence of large language models (LLMs) further improves the capabilities of open-domain dialogue systems and can generate fluent, coherent, and diverse responses. However, LLMs still lack a crucial ability: com... 详细信息
来源: 评论
PDE+: Enhancing Generalization via PDE with Adaptive Distributional Diffusion  38
PDE+: Enhancing Generalization via PDE with Adaptive Distrib...
收藏 引用
38th AAai Conference on Artificial Intelligence, AAai 2024
作者: Yuan, Yige Xu, Bingbing Lin, Bo Hou, Liang Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety & Security Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Department of Mathematics National University of Singapore Singapore
The generalization of neural networks is a central challenge in machine learning, especially concerning the performance under distributions that differ from training ones. Current methods, mainly based on the data-dri... 详细信息
来源: 评论
Enhancing Stance Detection on Social Media via Core Views Discovery  27
Enhancing Stance Detection on Social Media via Core Views Di...
收藏 引用
27th European Conference on Artificial Intelligence, ECai 2024
作者: Yan, Yu Shen, Yinghan Liu, Teli Jiang, Xuhui Yin, Dechun School of Information and Network Security People Public Security University of China China Institute of Computing Technology Chinese Academy of Sciences China Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China
Stance detection aims to identify the expressed attitude towards a target from the text, which is significant for learning public cognition from social media. The short and implicit nature of social media users' e... 详细信息
来源: 评论
Rethinking the Evaluation of In-Context Learning for LLMs
Rethinking the Evaluation of In-Context Learning for LLMs
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Yu, Guoxin Liu, Lemao Yu, Mo Yu, Yue Ao, Xiang Institute of Computing Technology CAS Beijing100190 China Peng Cheng Laboratory Shenzhen China University of Chinese Academy of Sciences Beijing100049 China Wechat AI Tencent China Key Lab of AI Safety Chinese Academy of Sciences Beijing100094 China
In-context learning (ICL) has demonstrated excellent performance across various downstream NLP tasks, especially when synergized with powerful large language models (LLMs). Existing studies evaluate ICL methods primar... 详细信息
来源: 评论
GNN-Based Persistent K-core Community Search in Temporal Graphs
GNN-Based Persistent K-core Community Search in Temporal Gra...
收藏 引用
IEEE International Conference on Big Data
作者: Zongli Jiang Yirui Tan Guoxin Chen Fangda Guo Jinli Zhang Xiaolu Bai Computer Science and Technology Beijing University of Technology Beijing China Key Laboratory of AI Safety Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China Key Laboratory of AI Safety Institute of Computing Technology CAS Beijing China
The goal of community search is to provide effective solutions for real-time, high-quality community searches within large networks. In many practical applications, such as event organization and friend recommendation... 详细信息
来源: 评论
Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
Recommender systems play a pivotal role in mitigating information overload in various fields. Nonetheless, the inherent openness of these systems introduces vulnerabilities, allowing attackers to insert fake users int... 详细信息
来源: 评论
Negative as Positive: Enhancing Out-of-distribution Generalization for Graph Contrastive Learning
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Zixu Xu, Bingbing Yuan, Yige Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
Graph contrastive learning (GCL), standing as the dominant paradigm in the realm of graph pre-training, has yielded considerable progress. Nonetheless, its capacity for out-of-distribution (OOD) generalization has bee...
来源: 评论
LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
Sequential recommender systems stand out for their ability to capture users’ dynamic interests and the patterns of item transitions. However, the inherent openness of sequential recommender systems renders them vulne... 详细信息
来源: 评论