咨询与建议

限定检索结果

文献类型

  • 90 篇 期刊文献
  • 47 篇 会议

馆藏范围

  • 137 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 94 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 13 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 4 篇 土木工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
  • 38 篇 管理学
    • 30 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 19 篇 理学
    • 9 篇 数学
    • 4 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 天文学
    • 1 篇 系统科学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 3 篇 教育学
    • 3 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 3 篇 modeling languag...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 benchmark testin...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 reinforcement le...
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 recommender syst...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...

机构

  • 75 篇 university of ch...
  • 31 篇 cas key laborato...
  • 18 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 10 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 7 篇 key laboratory o...
  • 6 篇 key laboratory o...
  • 6 篇 university of ca...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 school of artifi...
  • 4 篇 baidu inc.
  • 4 篇 peng cheng labor...

作者

  • 69 篇 cheng xueqi
  • 55 篇 shen huawei
  • 36 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 13 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 xu jun
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 xueqi cheng
  • 6 篇 hou liang

语言

  • 89 篇 英文
  • 47 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
137 条 记 录,以下是51-60 订阅
排序:
Augmentation-aware self-supervision for data-efficient GAN training  23
Augmentation-aware self-supervision for data-efficient GAN t...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Liang Hou Qi Cao Yige Yuan Songtao Zhao Chongyang Ma Siyuan Pan Pengfei Wan Zhongyuan Wang Huawei Shen Xueqi Cheng CAS Key Laboratory of AI Safety and Security Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences and Kuaishou Technology CAS Key Laboratory of AI Safety and Security Institute of Computing Technology Chinese Academy of Sciences CAS Key Laboratory of AI Safety and Security Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Kuaishou Technology CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting. Previously proposed differentiable augmentation demonstrates improved data efficiency...
来源: 评论
MIGE: A Unified Framework for Multimodal Instruction-Based Image Generation and Editing
arXiv
收藏 引用
arXiv 2025年
作者: Tian, Xueyun Li, Wei Xu, Bingbing Yuan, Yige Wang, Yuanzhuo Shen, Huawei CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited h... 详细信息
来源: 评论
CTRLORA: AN EXTENSIBLE AND EFFICIENT FRAMEWORK FOR CONTROLLABLE IMAGE GENERATION
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Yifeng He, Zhenliang Shan, Shiguang Chen, Xilin Key Lab of AI Safety Institute of Computing Technology CAS China University of Chinese Academy of Sciences China
Recently, large-scale diffusion models have made impressive progress in text-to-image (T2I) generation. To further equip these T2I models with fine-grained spatial control, approaches like ControlNet introduce an extr... 详细信息
来源: 评论
Understanding and Improving Adversarial Collaborative Filtering for Robust Recommendation
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Kaike Cao, Qi Wu, Yunfan Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences Beijing China
Adversarial Collaborative Filtering (ACF), which typically applies adversarial perturbations at user and item embeddings through adversarial training, is widely recognized as an effective strategy for enhancing the ro... 详细信息
来源: 评论
Accelerating the Surrogate Retraining for Poisoning Attacks against Recommender Systems
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Yunfan Cao, Qi Tao, Shuchang Zhang, Kaike Sun, Fei Shen, Huawei Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
Recent studies have demonstrated the vulnerability of recommender systems to data poisoning attacks, where adversaries inject carefully crafted fake user interactions into the training data of recommenders to promote ... 详细信息
来源: 评论
IS FACTUALITY ENHANCEMENT A FREE LUNCH FOR LLMS? BETTER FACTUALITY CAN LEAD TO WORSE CONTEXT-FaiTHFULNESS
arXiv
收藏 引用
arXiv 2024年
作者: Bi, Baolong Liu, Shenghua Wang, Yiwei Mei, Lingrui Fang, Junfeng Gao, Hongcheng Ni, Shiyu Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China University of Chinese Academy of Sciences China University of California Merced United States Hefei China
As the modern tools of choice for text understanding and generation, large language models (LLMs) are expected to accurately output answers by leveraging the input context. This requires LLMs to possess both context-f... 详细信息
来源: 评论
Blinded by Generated Contexts: How Language Models Merge Generated and Retrieved Contexts When Knowledge Conflicts?
arXiv
收藏 引用
arXiv 2024年
作者: Tan, Hexiang Sun, Fei Yang, Wanli Wang, Yuanzhuo Cao, Qi Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
While auxiliary information has become a key to enhancing Large Language Models (LLMs), relatively little is known about how LLMs merge these contexts, specifically contexts generated by LLMs and those retrieved from ... 详细信息
来源: 评论
A Review of Information Retrieval in the Era of Large Language Models  23
收藏 引用
23rd Chinese National Conference on Computational Linguistics, CCL 2024
作者: Pang, Liang Deng, Jingcheng Gu, Jia Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences / Beijing 100190 University of Chinese Academy of Sciences / Beijing 100190
The rapid development of generative artificial intelligence, exemplified by large language models, signifies a shift in artificial intelligence from the era of discrimination to generation. This advancement has greatl... 详细信息
来源: 评论
Synthetic View Augmentation for Sign Language Recognition  25
Synthetic View Augmentation for Sign Language Recognition
收藏 引用
Companion Proceedings of the ACM on Web Conference 2025
作者: Yuting Peng Peiqi Jiao Honggang Zou Yuecong Min Xilin Chen State Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China and University of Chinese Academy of Sciences Beijing China State Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences Beijing China
Sign language, as a visual language, is inherently spatial and dynamic, characterized by various hand shapes, movements, facial expressions, and body postures. In real-world scenarios, sign language recognition (SLR) ... 详细信息
来源: 评论
FCS-HGNN: Flexible Multi-type Community Search in Heterogeneous Information Networks
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Guoxin Guo, Fangda Wang, Yongqing Liu, Yanghao Yu, Peiying Shen, Huawei Cheng, Xueqi Key Laboratory of AI Safety Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China Key Laboratory of AI Safety Institute of Computing Technology CAS BeiJing China Natural Language Processing Lab School of Computer Science & Technology Soochow University Suzhou China
Community search is a personalized community discovery problem designed to identify densely connected subgraphs containing the query node. Recently, community search in heterogeneous information networks (HINs) has re... 详细信息
来源: 评论