咨询与建议

限定检索结果

文献类型

  • 88 篇 期刊文献
  • 40 篇 会议

馆藏范围

  • 128 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 87 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 12 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 4 篇 土木工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
    • 1 篇 交通运输工程
  • 36 篇 管理学
    • 29 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 20 篇 理学
    • 10 篇 数学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 天文学
    • 1 篇 系统科学
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 文学
    • 4 篇 中国语言文学
    • 4 篇 外国语言文学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 9 篇 semantics
  • 8 篇 computational li...
  • 5 篇 generative adver...
  • 5 篇 benchmarking
  • 5 篇 training
  • 3 篇 modeling languag...
  • 3 篇 large datasets
  • 3 篇 adversarial mach...
  • 3 篇 decoding
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 rendering (compu...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 recommender syst...
  • 2 篇 digital elevatio...
  • 2 篇 knowledge graph
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...
  • 2 篇 computational mo...

机构

  • 73 篇 university of ch...
  • 29 篇 cas key laborato...
  • 17 篇 cas key laborato...
  • 11 篇 cas key laborato...
  • 8 篇 gaoling school o...
  • 8 篇 cas key laborato...
  • 8 篇 university of ca...
  • 7 篇 kuaishou technol...
  • 7 篇 key laboratory o...
  • 7 篇 cas key laborato...
  • 7 篇 cas key laborato...
  • 6 篇 university of ca...
  • 6 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 cas key laborato...
  • 5 篇 institute for ai...
  • 4 篇 idea research in...
  • 4 篇 baidu inc.
  • 4 篇 cas key laborato...
  • 3 篇 key lab of ai sa...

作者

  • 68 篇 cheng xueqi
  • 54 篇 shen huawei
  • 34 篇 pang liang
  • 18 篇 sun fei
  • 15 篇 cao qi
  • 13 篇 bi baolong
  • 12 篇 xu shicheng
  • 11 篇 wang yiwei
  • 11 篇 liu shenghua
  • 11 篇 mei lingrui
  • 9 篇 zhang kaike
  • 9 篇 wu yunfan
  • 8 篇 guo jiafeng
  • 8 篇 xu jun
  • 8 篇 guo fangda
  • 8 篇 xu bingbing
  • 7 篇 wang yuanzhuo
  • 7 篇 yuan yige
  • 6 篇 shan shiguang
  • 6 篇 hou liang

语言

  • 96 篇 英文
  • 31 篇 其他
  • 1 篇 中文
检索条件"机构=CAS Key Laboratory of AI Safety Institute of Computing Technology"
128 条 记 录,以下是71-80 订阅
排序:
"Not Aligned" is Not "Malicious": Being Careful about Hallucinations of Large Language Models’ Jailbreak
arXiv
收藏 引用
arXiv 2024年
作者: Mei, Lingrui Liu, Shenghua Wang, Yiwei Bi, Baolong Mao, Jiayi Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China University of Chinese Academy of Sciences China UCLA United States University of California Merced United States Tsinghua University China
"Jailbreak" is a major safety concern of Large Language Models (LLMs), which occurs when malicious prompts lead LLMs to produce harmful outputs, raising issues about the reliability and safety of LLMs. There... 详细信息
来源: 评论
BayLing 2: A Multilingual Large Language Model with Efficient Language Alignment
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Shaolei Zhang, Kehao Fang, Qingkai Guo, Shoutao Zhou, Yan Liu, Xiaodong Feng, Yang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences ICT CAS China Key Laboratory of AI Safety Chinese Academy of Sciences China University of Chinese Academy of Sciences Beijing China Research Center of Distributed Systems Institute of Computing Technology Chinese Academy of Sciences ICT CAS China
Large language models (LLMs), with their powerful generative capabilities and vast knowledge, empower various tasks in everyday life. However, these abilities are primarily concentrated in high-resource languages, lea... 详细信息
来源: 评论
Revisiting Robust RAG: Do We Still Need Complex Robust Training in the Era of Powerful LLMs?
arXiv
收藏 引用
arXiv 2025年
作者: Ding, Hanxing Tao, Shuchang Pang, Liang Wei, Zihao Chen, Liwei Xu, Kun Shen, Huawei Cheng, Xueqi Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Kuaishou Technology China
Retrieval-augmented generation (RAG) systems often suffer from performance degradation when encountering noisy or irrelevant documents, driving researchers to develop sophisticated training strategies to enhance their...
来源: 评论
Adaptive Token Biaser: Knowledge Editing via Biasing key Entities
arXiv
收藏 引用
arXiv 2024年
作者: Bi, Baolong Liu, Shenghua Wang, Yiwei Mei, Lingrui Gao, Hongcheng Xu, Yilong Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China University of California Los Angeles United States
The parametric knowledge memorized by large language models (LLMs) becomes outdated quickly. In-context editing (ICE) is currently the most effective method for updating the knowledge of LLMs. Recent advancements invo... 详细信息
来源: 评论
A THEORY FOR TOKEN-LEVEL HARMONIZATION IN RETRIEVAL-AUGMENTED GENERATION
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Shicheng Pang, Liang Shen, Huawei Cheng, Xueqi Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs). Studies show that while RAG provides valuable external information (benefit), it may also mislead LLMs (detriment)... 详细信息
来源: 评论
MITA: Bridging the Gap between Model and Data for Test-time Adaptation
arXiv
收藏 引用
arXiv 2024年
作者: Yuan, Yige Xu, Bingbing Xiao, Teng Hou, Liang Sun, Fei Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Pennsylvania State University United States Kuaishou Technology China
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models. However, existing mainstream TTA methods, predominantly operating at batch level, often exhibit suboptimal p... 详细信息
来源: 评论
Following the Autoregressive Nature of LLM Embeddings via Compression and Alignment
arXiv
收藏 引用
arXiv 2025年
作者: Deng, Jingcheng Jiang, Zhongtao Pang, Liang Chen, Liwei Xu, Kun Wei, Zihao Shen, Huawei Cheng, Xueqi Key Laboratory of AI Safety Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Kuaishou Technology China
A new trend uses LLMs as dense text encoders via contrastive learning. However, since LLM embeddings predict the probability distribution of the next token, they are inherently generative and distributive, conflicting... 详细信息
来源: 评论
Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Yuqi Dai, Sunhao Pang, Liang Wang, Gang Dong, Zhenhua Xu, Jun Wen, Ji-Rong Gaoling School of Artificial Intelligence Renmin University of China Beijing China CAS Key Laboratory of AI Safety Institute of Computing Technology CAS Beijing China Huawei Noah’s Ark Lab Shenzhen China
Recently, researchers have uncovered that neural retrieval models prefer ai-generated content (aiGC), called source bias [10, 40]. Compared to active search behavior, recommendation represents another important means ... 详细信息
来源: 评论
Context Graph
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Chengjin Li, Muzhi Yang, Cehao Jiang, Xuhui Tang, Lumingyuan Qi, Yiyan Guo, Jian IDEA Research International Digital Economy Academy China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China
Knowledge Graphs (KGs) are foundational structures in many ai applications, representing entities and their interrelations through triples. However, triple-based KGs lack the contextual information of relational knowl... 详细信息
来源: 评论
F2GNN: An Adaptive Filter with Feature Segmentation for Graph-Based Fraud Detection
F2GNN: An Adaptive Filter with Feature Segmentation for Grap...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (IcasSP)
作者: Guanghui Hu Yang Liu Qing He Xiang Ao Henan Institute of Advanced Technology Zhengzhou University Zhengzhou P.R. China Key Laboratory of AI Safety & Security Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China CASMINO Ltd. Suzhou China
Graph Neural Networks (GNNs) have received remarkable success in identifying fraudulent activities on graphs. Most approaches leverage the full user feature together and aggregate the messages from its neighbors by a ...
来源: 评论