咨询与建议

限定检索结果

文献类型

  • 988 篇 期刊文献
  • 657 篇 会议

馆藏范围

  • 1,645 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,020 篇 工学
    • 670 篇 计算机科学与技术...
    • 572 篇 软件工程
    • 229 篇 信息与通信工程
    • 122 篇 电气工程
    • 102 篇 生物工程
    • 98 篇 电子科学与技术(可...
    • 91 篇 控制科学与工程
    • 73 篇 化学工程与技术
    • 69 篇 光学工程
    • 51 篇 生物医学工程(可授...
    • 49 篇 仪器科学与技术
    • 46 篇 机械工程
    • 45 篇 网络空间安全
    • 33 篇 材料科学与工程(可...
    • 32 篇 动力工程及工程热...
    • 28 篇 安全科学与工程
  • 617 篇 理学
    • 234 篇 数学
    • 219 篇 物理学
    • 141 篇 生物学
    • 83 篇 统计学(可授理学、...
    • 54 篇 地球物理学
    • 52 篇 化学
    • 31 篇 系统科学
  • 281 篇 管理学
    • 166 篇 图书情报与档案管...
    • 123 篇 管理科学与工程(可...
    • 44 篇 工商管理
  • 102 篇 医学
    • 70 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 27 篇 药学(可授医学、理...
  • 46 篇 农学
    • 27 篇 作物学
  • 41 篇 法学
  • 25 篇 经济学
  • 12 篇 文学
  • 10 篇 军事学
  • 6 篇 教育学
  • 2 篇 艺术学

主题

  • 70 篇 semantics
  • 47 篇 deep learning
  • 44 篇 feature extracti...
  • 39 篇 accuracy
  • 38 篇 training
  • 31 篇 quantum cryptogr...
  • 30 篇 computational mo...
  • 30 篇 federated learni...
  • 26 篇 privacy
  • 23 篇 neural networks
  • 20 篇 forecasting
  • 19 篇 image segmentati...
  • 19 篇 information retr...
  • 19 篇 data models
  • 18 篇 generative adver...
  • 18 篇 knowledge graph
  • 18 篇 graph neural net...
  • 17 篇 data mining
  • 16 篇 machine learning
  • 16 篇 correlation

机构

  • 210 篇 university of ch...
  • 81 篇 cas key lab of n...
  • 71 篇 shandong provinc...
  • 64 篇 cas key laborato...
  • 64 篇 key laboratory o...
  • 52 篇 school of comput...
  • 49 篇 network and data...
  • 47 篇 tianjin key labo...
  • 46 篇 shandong enginee...
  • 43 篇 college of compu...
  • 42 篇 cas key laborato...
  • 36 篇 college of cyber...
  • 34 篇 school of comput...
  • 32 篇 cas center for e...
  • 31 篇 hefei national l...
  • 31 篇 shaanxi key labo...
  • 27 篇 anhui province k...
  • 27 篇 cas key lab of n...
  • 26 篇 school of comput...
  • 24 篇 shaanxi key labo...

作者

  • 194 篇 cheng xueqi
  • 154 篇 guo jiafeng
  • 52 篇 zhang ruqing
  • 49 篇 fan yixing
  • 45 篇 lan yanyan
  • 43 篇 shen huawei
  • 33 篇 jin xiaolong
  • 29 篇 pang liang
  • 25 篇 guo guang-can
  • 24 篇 bi keping
  • 22 篇 de rijke maarten
  • 21 篇 wang zhongmin
  • 21 篇 cao qi
  • 20 篇 xueqi cheng
  • 19 篇 chen yanping
  • 19 篇 xu jun
  • 19 篇 jie tian
  • 17 篇 liu jun
  • 17 篇 li chuan-feng
  • 17 篇 chen wei

语言

  • 1,468 篇 英文
  • 142 篇 其他
  • 36 篇 中文
检索条件"机构=CAS Key Laboratory of Network Data Science Technology"
1645 条 记 录,以下是161-170 订阅
排序:
Inducing Causal Structure for Abstractive Text Summarization
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Lu Zhang, Ruqing Huang, Wei Chen, Wei Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
The mainstream of data-driven abstractive summarization models tends to explore the correlations rather than the causal relationships. Among such correlations, there can be spurious ones which suffer from the language... 详细信息
来源: 评论
A Comparative Study of Training Objectives for Clarification Facet Generation
arXiv
收藏 引用
arXiv 2023年
作者: Ni, Shiyu Bi, Keping Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
Due to the ambiguity and vagueness of a user query, it is essential to identify the query facets for the clarification of user intents. Existing work on query facet generation has achieved compelling performance by se... 详细信息
来源: 评论
CIR at the NTCIR-17 ULTRE-2 Task
arXiv
收藏 引用
arXiv 2023年
作者: Yu, Lulu Bi, Keping Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
The Chinese academy of sciences Information Retrieval team (CIR) has participated in the NTCIR-17 ULTRE-2 task. This paper describes our approaches and reports our results on the ULTRE-2 task. We recognize the issue o... 详细信息
来源: 评论
On the Robustness of Generative Retrieval Models: An Out-of-Distribution Perspective
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yu-An Zhang, Ruqing Guo, Jiafeng Chen, Wei Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
Recently, we have witnessed generative retrieval increasingly gaining attention in the information retrieval (IR) field, which retrieves documents by directly generating their identifiers. So far, much effort has been... 详细信息
来源: 评论
CAME: Competitively Learning a Mixture-of-Experts Model for First-stage Retrieval
arXiv
收藏 引用
arXiv 2023年
作者: Cai, Yinqiong Fan, Yixing Bi, Keping Guo, Jiafeng Chen, Wei Zhang, Ruqing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
The first-stage retrieval aims to retrieve a subset of candidate documents from a huge collection both effectively and efficiently. Since various matching patterns can exist between queries and relevant documents, pre... 详细信息
来源: 评论
Ensemble Ranking Model with Multiple Pretraining Strategies for Web Search
arXiv
收藏 引用
arXiv 2023年
作者: Sun, Xiaojie Yu, Lulu Wang, Yiting Bi, Keping Guo, Jiafeng CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
An effective ranking model usually requires a large amount of training data to learn the relevance between documents and queries. User clicks are often used as training data since they can indicate relevance and are c... 详细信息
来源: 评论
Feature-Enhanced network with Hybrid Debiasing Strategies for Unbiased Learning to Rank
arXiv
收藏 引用
arXiv 2023年
作者: Yu, Lulu Wang, Yiting Sun, Xiaojie Bi, Keping Guo, Jiafeng CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
Unbiased learning to rank (ULTR) aims to mitigate various biases existing in user clicks, such as position bias, trust bias, presentation bias, and learn an effective ranker. In this paper, we introduce our winning ap... 详细信息
来源: 评论
L2R: Lifelong Learning for First-stage Retrieval with Backward-Compatible Representations
arXiv
收藏 引用
arXiv 2023年
作者: Cai, Yinqiong Bi, Keping Fan, Yixing Guo, Jiafeng Chen, Wei Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
First-stage retrieval is a critical task that aims to retrieve relevant document candidates from a large-scale collection. While existing retrieval models have achieved impressive performance, they are mostly studied ... 详细信息
来源: 评论
A Verifiable Privacy-Preserving Outsourced Prediction Scheme Based on Blockchain in Smart Healthcare
A Verifiable Privacy-Preserving Outsourced Prediction Scheme...
收藏 引用
2023 IEEE International Conference on E-Health networking, Application and Services, Healthcom 2023
作者: Li, Ta Tian, Youliang Xiong, Jinbo Wang, Linjie College of Computer Science and Technology Guizhou University State Key Laboratory of Public Big Data Guiyang550025 China College of Computer and Cyber Security Fujian Provincial Key Laboratory of Network Security and Cryptology Fujian Normal University Fuzhou350117 China School of Data Science Tongren University Tongren554300 China
The swift progression of the Internet of Things and the extensive integration of machine learning have spurred the growth of intelligent healthcare. Many intelligent healthcare devices, limited by their own computing ... 详细信息
来源: 评论
PNRITR:Research on Positive and Negative Entity Region Perception Methods for Image-Text Retrieval  36
PNRITR:Research on Positive and Negative Entity Region Perce...
收藏 引用
36th International Conference on Software Engineering and Knowledge Engineering, SEKE 2024
作者: Zhang, Zhiping Sun, Tao Zheng, Hongyan Liu, Hao Liu, Gengchen Yang, Zhi Wang, Xiaoyu Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Qilu University of Technology Shandong Academy of Sciences Jinan China Shandong Engineering Research Center of Big Data Applied Technology Faculty of Computer Science and Technology Qilu University of Technology Shandong Academy of Sciences Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China
The aim of cross-modal image-text retrieval is to heighten comprehension and to create robust associations between visual and textual content. This process entails a mutual querying and synchronization across various ... 详细信息
来源: 评论