咨询与建议

限定检索结果

文献类型

  • 1,007 篇 期刊文献
  • 670 篇 会议

馆藏范围

  • 1,677 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,031 篇 工学
    • 679 篇 计算机科学与技术...
    • 581 篇 软件工程
    • 233 篇 信息与通信工程
    • 129 篇 电气工程
    • 102 篇 电子科学与技术(可...
    • 100 篇 生物工程
    • 93 篇 控制科学与工程
    • 73 篇 化学工程与技术
    • 68 篇 光学工程
    • 50 篇 仪器科学与技术
    • 48 篇 生物医学工程(可授...
    • 47 篇 机械工程
    • 47 篇 网络空间安全
    • 34 篇 材料科学与工程(可...
    • 32 篇 动力工程及工程热...
    • 28 篇 安全科学与工程
  • 621 篇 理学
    • 236 篇 数学
    • 224 篇 物理学
    • 140 篇 生物学
    • 84 篇 统计学(可授理学、...
    • 54 篇 地球物理学
    • 53 篇 化学
    • 31 篇 系统科学
  • 281 篇 管理学
    • 165 篇 图书情报与档案管...
    • 123 篇 管理科学与工程(可...
    • 44 篇 工商管理
  • 103 篇 医学
    • 71 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 27 篇 药学(可授医学、理...
  • 46 篇 农学
    • 27 篇 作物学
  • 41 篇 法学
  • 25 篇 经济学
  • 12 篇 文学
  • 10 篇 军事学
  • 6 篇 教育学
  • 2 篇 艺术学

主题

  • 75 篇 semantics
  • 51 篇 feature extracti...
  • 48 篇 accuracy
  • 47 篇 deep learning
  • 42 篇 training
  • 38 篇 federated learni...
  • 36 篇 computational mo...
  • 31 篇 quantum cryptogr...
  • 27 篇 privacy
  • 24 篇 neural networks
  • 21 篇 forecasting
  • 21 篇 data models
  • 20 篇 image segmentati...
  • 20 篇 data mining
  • 20 篇 graph neural net...
  • 19 篇 generative adver...
  • 19 篇 information retr...
  • 18 篇 knowledge graph
  • 17 篇 reinforcement le...
  • 16 篇 machine learning

机构

  • 212 篇 university of ch...
  • 81 篇 cas key lab of n...
  • 77 篇 key laboratory o...
  • 71 篇 shandong provinc...
  • 64 篇 cas key laborato...
  • 52 篇 shandong enginee...
  • 50 篇 network and data...
  • 50 篇 school of comput...
  • 47 篇 tianjin key labo...
  • 43 篇 college of compu...
  • 42 篇 cas key laborato...
  • 35 篇 college of cyber...
  • 34 篇 cas center for e...
  • 34 篇 school of comput...
  • 33 篇 hefei national l...
  • 30 篇 shaanxi key labo...
  • 29 篇 anhui province k...
  • 27 篇 cas key lab of n...
  • 25 篇 school of comput...
  • 23 篇 cas key laborato...

作者

  • 196 篇 cheng xueqi
  • 156 篇 guo jiafeng
  • 53 篇 zhang ruqing
  • 50 篇 fan yixing
  • 46 篇 lan yanyan
  • 43 篇 shen huawei
  • 35 篇 jin xiaolong
  • 30 篇 pang liang
  • 27 篇 guo guang-can
  • 25 篇 bi keping
  • 22 篇 de rijke maarten
  • 21 篇 wang zhongmin
  • 21 篇 cao qi
  • 20 篇 xueqi cheng
  • 20 篇 xu jun
  • 20 篇 jie tian
  • 18 篇 chen yanping
  • 18 篇 li chuan-feng
  • 17 篇 liu jun
  • 17 篇 huang qingming

语言

  • 1,303 篇 英文
  • 340 篇 其他
  • 37 篇 中文
检索条件"机构=CAS Key Laboratory of Network Data Science and Technology"
1677 条 记 录,以下是1071-1080 订阅
排序:
Semantic models for the first-stage retrieval: a comprehensive review
arXiv
收藏 引用
arXiv 2021年
作者: Guo, Jiafeng Cai, Yinqiong Fan, Yixing Sun, Fei Zhang, Ruqing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences NO. 6 Kexueyuan South Road Haidian District Beijing100190 China Alibaba Group Beijing100102 China
Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidate... 详细信息
来源: 评论
ICTNET at TREC 2019 Deep Learning Track  28
ICTNET at TREC 2019 Deep Learning Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participated in the Deep Learning Track at TREC 2019. We built a ranking system which combines a search component based on BM25 and a semantic matching component using pretraining knowledge. Our best run achieves N... 详细信息
来源: 评论
ICTNET at Trec 2019 Incident Streams Track  28
ICTNET at Trec 2019 Incident Streams Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Guangsheng, Kuang Kun, Zhang Jiabao, Zhang Xin, Zheng University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
Social medial become our public ways to share our information in our lives. Crisis management via social medial is becoming indispensable for its tremendous information. While deep learning shows surprising outcome in... 详细信息
来源: 评论
ICTNET at TREC 2019 News Track  28
ICTNET at TREC 2019 News Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ding, Yuyang Lian, Xiaoying Zhou, Houquan Liu, Zhaoge Ding, Hanxing Hou, Zhongni University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
This paper describes our work in the background linking task and entity ranking task in TREC 2018 News Track. We explore four methods in background linking task and two methods in entity ranking task. All of our metho...
来源: 评论
Novel node classification framework
arXiv
收藏 引用
arXiv 2019年
作者: Cen, Keting Shen, Huawei Gao, Jinhua Cao, Qi Xu, Bingbing Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology
GCN is a recent effective algorithm which effectively learns a function incorporate both graph structure and node features for semisupervised graph based node classification. Although GCN exceeds other state-of-the-ar... 详细信息
来源: 评论
ICTNET at TREC 2019 Complex Answer Retrieval Track  28
ICTNET at TREC 2019 Complex Answer Retrieval Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ren, Hongfei Xiong, Ruibin Zeng, Yutao Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participate in the Complex Answer Retrieval(CAR) track at TREC 2019. We applied several useful models in this work. In the rough ranking, we applied doc2query model to predict queries and retrieve using BM25. In th...
来源: 评论
Hierarchical Deep Reinforcement Learning for Age-of-Information Minimization in IRS-aided and Wireless-powered Wireless networks
arXiv
收藏 引用
arXiv 2022年
作者: Gong, Shimin Cui, Leiyang Gu, Bo Lyu, Bin Hoang, Dinh Thai Niyato, Dusit The School of Intelligent Systems Engineering Sun Yat-sen University Shenzhen518055 China Key Laboratory of Ministry of Education in Broadband Wireless Communication and Sensor Network Technology Nanjing University of Posts and Telecommunications China The School of Electrical and Data Engineering University of Technology Sydney Australia School of Computer Science and Engineering Nanyang Technological University Singapore
In this paper, we focus on a wireless-powered sensor network coordinated by a multi-antenna access point (AP). Each node can generate sensing information and report the latest information to the AP using the energy ha... 详细信息
来源: 评论
Exploring the boundary of quantum correlations with a time-domain optical processor
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Zheng-Hao Meng, Yu Wu, Yu-Ze Hao, Ze-Yan Xu, Zhen-Peng Ai, Cheng-Jun Wei, Hai Wen, Kai Chen, Jing-Ling Ma, Jie Xu, Jin-Shi Li, Chuan-Feng Guo, Guang-Can CAS Key Laboratory of Quantum Information University of Science and Technology of China Hefei230026 China School of Mathematical Sciences University of Science and Technology of China Hefei230026 China CAS Centre for Excellence in Quantum Information and Quantum Physics University of Science and Technology of China Hefei230026 China Beijing QBoson Quantum Technology Co. Ltd. Beijing100015 China School of Physics and Optoelectronics Engineering Anhui University Hefei230601 China Naturwissenschaftlich-Technische Fakultät Universität Siegen Walter-Flex-Straße 3 Siegen57068 Germany Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area Shenzhen518045 China Theoretical Physics Division Chern Institute of Mathematics Nankai University Tianjin300071 China Anhui Province Key Laboratory of Quantum Network University of Science and Technology of China Anhui Hefei230026 China Hefei National Laboratory University of Science and Technology of China Hefei230088 China
Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger–Horne–Zeilinger (GHZ)-type paradoxes are proofs of contextual... 详细信息
来源: 评论
Attribute Propagation Enhanced Community Detection Model for Bitcoin De-anonymizing  3rd
Attribute Propagation Enhanced Community Detection Model for...
收藏 引用
3rd International Conference on Machine Learning for Cyber Security, ML4CS 2020
作者: Wang, Jiming Xie, Xueshuo Fang, Yaozheng Lu, Ye Li, Tao Wang, Guiling College of Computer Science Nankai University Tianjin300350 China College of Cyber Science Nankai University Tianjin300350 China Tianjin Key Laboratory of Network and Data Security Technology Tianjin300350 China New Jersey Institute of Technology NewarkNJ07102 United States
Bitcoin is a kind of decentralized cryptocurrency on a peer-to-peer network. Anonymity makes Bitcoin widely used in online payment but it is a disadvantage for regulatory purposes. We aim to de-anonymize Bitcoin to as... 详细信息
来源: 评论
Emotion-Related Rich-Club Organization in Dynamic Brain network
Emotion-Related Rich-Club Organization in Dynamic Brain Netw...
收藏 引用
2020 International Conference on networking and network Applications, NaNA 2020
作者: Wang, Zhongmin Zhou, Rui Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an University of Posts and Telecommunications Xi'an Shaanxi710121 China School of Computer Science and Technology Xi'an University of Posts and Telecommunications Xi'an Shaanxi710121 China
The information interaction when the brain processes emotional activities is intricate. Therefore, it is very necessary for us to explore the mechanisms of the functional coordination of various brain regions. Recent ... 详细信息
来源: 评论