咨询与建议

限定检索结果

文献类型

  • 987 篇 期刊文献
  • 637 篇 会议

馆藏范围

  • 1,624 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,005 篇 工学
    • 663 篇 计算机科学与技术...
    • 567 篇 软件工程
    • 222 篇 信息与通信工程
    • 133 篇 电气工程
    • 99 篇 生物工程
    • 90 篇 电子科学与技术(可...
    • 82 篇 控制科学与工程
    • 72 篇 化学工程与技术
    • 62 篇 光学工程
    • 50 篇 仪器科学与技术
    • 49 篇 生物医学工程(可授...
    • 48 篇 机械工程
    • 44 篇 网络空间安全
    • 35 篇 材料科学与工程(可...
    • 30 篇 动力工程及工程热...
    • 27 篇 安全科学与工程
  • 604 篇 理学
    • 231 篇 数学
    • 215 篇 物理学
    • 138 篇 生物学
    • 82 篇 统计学(可授理学、...
    • 54 篇 地球物理学
    • 51 篇 化学
    • 30 篇 系统科学
  • 279 篇 管理学
    • 165 篇 图书情报与档案管...
    • 121 篇 管理科学与工程(可...
    • 44 篇 工商管理
  • 108 篇 医学
    • 75 篇 临床医学
    • 49 篇 基础医学(可授医学...
    • 27 篇 药学(可授医学、理...
  • 45 篇 农学
    • 26 篇 作物学
  • 40 篇 法学
  • 25 篇 经济学
  • 12 篇 文学
  • 10 篇 军事学
  • 7 篇 教育学
  • 2 篇 艺术学

主题

  • 71 篇 semantics
  • 47 篇 deep learning
  • 46 篇 feature extracti...
  • 41 篇 training
  • 39 篇 accuracy
  • 31 篇 computational mo...
  • 31 篇 quantum cryptogr...
  • 29 篇 federated learni...
  • 24 篇 privacy
  • 23 篇 neural networks
  • 20 篇 forecasting
  • 20 篇 data models
  • 19 篇 graph neural net...
  • 19 篇 information retr...
  • 18 篇 generative adver...
  • 18 篇 image segmentati...
  • 18 篇 knowledge graph
  • 18 篇 data mining
  • 16 篇 machine learning
  • 16 篇 correlation

机构

  • 205 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 71 篇 shandong provinc...
  • 63 篇 cas key laborato...
  • 63 篇 key laboratory o...
  • 49 篇 network and data...
  • 49 篇 school of comput...
  • 47 篇 tianjin key labo...
  • 46 篇 shandong enginee...
  • 42 篇 college of compu...
  • 38 篇 cas key laborato...
  • 34 篇 college of cyber...
  • 34 篇 school of comput...
  • 29 篇 cas center for e...
  • 29 篇 shaanxi key labo...
  • 26 篇 hefei national l...
  • 26 篇 cas key lab of n...
  • 25 篇 school of comput...
  • 24 篇 cas key laborato...
  • 23 篇 anhui province k...

作者

  • 190 篇 cheng xueqi
  • 146 篇 guo jiafeng
  • 49 篇 zhang ruqing
  • 47 篇 fan yixing
  • 43 篇 shen huawei
  • 43 篇 lan yanyan
  • 32 篇 jin xiaolong
  • 28 篇 pang liang
  • 24 篇 guo guang-can
  • 24 篇 bi keping
  • 21 篇 de rijke maarten
  • 21 篇 wang zhongmin
  • 21 篇 cao qi
  • 19 篇 chen yanping
  • 19 篇 jie tian
  • 18 篇 xu jun
  • 18 篇 chen wei
  • 17 篇 qin zhen
  • 16 篇 liu jun
  • 16 篇 qiang li

语言

  • 1,495 篇 英文
  • 95 篇 其他
  • 36 篇 中文
检索条件"机构=CAS Key Laboratory of Network Data Science and Technology"
1624 条 记 录,以下是181-190 订阅
排序:
Equivalence of f(Q) cosmology with quintom-like scenario: the phantom field as effective realization of the non-trivial connection
arXiv
收藏 引用
arXiv 2025年
作者: Basilakos, Spyros Paliathanasis, Andronikos Saridakis, Emmanuel N. National Observatory of Athens Lofos Nymfon Athens11852 Greece Academy of Athens Research Center for Astronomy and Applied Mathematics Soranou Efesiou 4 Athens11527 Greece School of Sciences European University Cyprus Diogenes Street Engomi Nicosia1516 Cyprus Institute of Systems Science Department of Mathematics Faculty of Applied Sciences Durban University of Technology Durban4000 South Africa School for Data Science and Computational Thinking Stellenbosch University 44 Banghoek Rd Stellenbosch7600 South Africa Departamento de Matemáticas Universidad Católica del Norte Avda. Angamos 0610 Casilla Antofagasta1280 Chile CAS Key Laboratory for Researches in Galaxies and Cosmology Department of Astronomy University of Science and Technology of China Anhui Hefei230026 China
We show that f(Q) cosmology with a non-trivial connection, namely the Connection II of the literature, is dynamically equivalent with a quintom-like model. In particular, we show that the scalar field arising from the... 详细信息
来源: 评论
ICTNET at TREC 2017 Dynamic Domain Track  26
ICTNET at TREC 2017 Dynamic Domain Track
收藏 引用
26th Text REtrieval Conference, TREC 2017
作者: Zhang, Weimin Hu, Yaokang Jia, Rongqian Wang, Xianfa Zhang, Le Feng, Yue Yu, Sihao Xue, Yuanhai Yu, Xiaoming Liu, Yue Cheng, Xueqi Institute of Computing Technology CAS China Key Laboratory of Web Data Science and Technology CAS China University of Chinese Academy of Sciences China
来源: 评论
User Profiling for CSDN:keyphrase Extraction,User Tagging and User Growth Value Prediction
收藏 引用
data Intelligence 2019年 第2期1卷 137-159页
作者: Guoliang Xing Hao Gao Qi Cao Xinyu Yue Bingbing Xu Keting Cen Huawei Shen Key Laboratory of Network Data Science and Technology Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China University of Chinese Academy of Sciences Beijing 100049China
The Chinese Software Developer network(CSDN)is one of the largest information technology communities and service platforms in *** paper describes the user profiling for CSDN,an evaluation track of SMP Cup *** contains... 详细信息
来源: 评论
A Novel Identification Method for Frequently Switched Encrypted Video Streaming in Complex network Environment  22
A Novel Identification Method for Frequently Switched Encryp...
收藏 引用
2022 Asia Conference on Electrical, Power and Computer Engineering, EPCE 2022
作者: Zhang, Y.U. Ma, Xiaowei Leng, Dongpeng Yu, Peiran College of Cyber Science Nankai University Tianjin Key Laboratory of Network and Data Security Technology Tianjin China College of Computer Science Nankai University Tianjin Key Laboratory of Network and Data Security Technology Tianjin China
Nowadays, to provide stable video streaming and smooth user experience among different scenarios, more and more online video sharing and social media platforms adopt the Dynamic Adaptive Streaming over HTTP (DASH), wh... 详细信息
来源: 评论
HiSMatch: Historical Structure Matching based Temporal Knowledge Graph Reasoning
HiSMatch: Historical Structure Matching based Temporal Knowl...
收藏 引用
2022 Findings of the Association for Computational Linguistics: EMNLP 2022
作者: Li, Zixuan Hou, Zhongni Guan, Saiping Jin, Xiaolong Peng, Weihua Bai, Long Lyu, Yajuan Li, Wei Guo, Jiafeng Cheng, Xueqi School of Computer Science and Technology University of Chinese Academy of Sciences China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China Baidu Inc
A Temporal Knowledge Graph (TKG) is a sequence of KGs with respective timestamps, which adopts quadruples in the form of (subject, relation, object, timestamp) to describe dynamic facts. TKG reasoning has facilitated ... 详细信息
来源: 评论
ICTNET at TREC 2019 Deep Learning Track  28
ICTNET at TREC 2019 Deep Learning Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participated in the Deep Learning Track at TREC 2019. We built a ranking system which combines a search component based on BM25 and a semantic matching component using pretraining knowledge. Our best run achieves N... 详细信息
来源: 评论
Sparse Word Embeddings Using 1 Regularized Online Learning
Sparse Word Embeddings Using 1 Regularized Online Learning
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Sun, Fei Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
Recently, Word2Vec tool has attracted a lot of interest for its promising performances in a variety of natural language processing (NLP) tasks. However, a critical issue is that the dense word representations learned ... 详细信息
来源: 评论
ICTNET at Trec 2019 Incident Streams Track  28
ICTNET at Trec 2019 Incident Streams Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Guangsheng, Kuang Kun, Zhang Jiabao, Zhang Xin, Zheng University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
Social medial become our public ways to share our information in our lives. Crisis management via social medial is becoming indispensable for its tremendous information. While deep learning shows surprising outcome in... 详细信息
来源: 评论
HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2025年
作者: Wang, Di Hu, Meiqi Jin, Yao Miao, Yuchun Yang, Jiaqi Xu, Yichu Qin, Xiaolei Ma, Jiaqi Sun, Lingyu Li, Chenxing Fu, Chuan Chen, Hongruixuan Han, Chengxi Yokoya, Naoto Zhang, Jing Xu, Minqiang Liu, Lin Zhang, Lefei Wu, Chen Du, Bo Tao, Dacheng Zhang, Liangpei Wuhan University School of Computer Science China Wuhan University National Engineering Research Center for Multimedia Software Hubei Key Laboratory of Multimedia and Network Communication Engineering China Zhongguancun Academy China Wuhan University State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing China Sun Yat-sen University School of Geography and Planning China Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates Chongqing University College of Computer Science China The University of Tokyo Japan RIKEN Center for Advanced Intelligence Project Japan Intelligent Science & Technology Academy Limited CASIC China iFlytek Company Ltd. National Engineering Research Center of Speech and Language Information Processing China Nanyang Technological University College of Computing & Data Science Singapore Henan Academy of Sciences Aerospace Information Research Institute China
Accurate hyperspectral image (HSI) interpretation is critical for providing valuable insights into various earth observation-related applications such as urban planning, precision agriculture, and environmental monito... 详细信息
来源: 评论
ICTNET at TREC 2019 News Track  28
ICTNET at TREC 2019 News Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ding, Yuyang Lian, Xiaoying Zhou, Houquan Liu, Zhaoge Ding, Hanxing Hou, Zhongni University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
This paper describes our work in the background linking task and entity ranking task in TREC 2018 News Track. We explore four methods in background linking task and two methods in entity ranking task. All of our metho...
来源: 评论