咨询与建议

限定检索结果

文献类型

  • 994 篇 期刊文献
  • 641 篇 会议

馆藏范围

  • 1,635 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,027 篇 工学
    • 673 篇 计算机科学与技术...
    • 572 篇 软件工程
    • 237 篇 信息与通信工程
    • 139 篇 电气工程
    • 100 篇 生物工程
    • 98 篇 电子科学与技术(可...
    • 90 篇 控制科学与工程
    • 73 篇 化学工程与技术
    • 70 篇 光学工程
    • 50 篇 仪器科学与技术
    • 49 篇 生物医学工程(可授...
    • 47 篇 机械工程
    • 47 篇 网络空间安全
    • 34 篇 材料科学与工程(可...
    • 31 篇 动力工程及工程热...
    • 29 篇 安全科学与工程
  • 619 篇 理学
    • 236 篇 数学
    • 222 篇 物理学
    • 139 篇 生物学
    • 86 篇 统计学(可授理学、...
    • 54 篇 地球物理学
    • 52 篇 化学
    • 31 篇 系统科学
  • 283 篇 管理学
    • 165 篇 图书情报与档案管...
    • 126 篇 管理科学与工程(可...
    • 45 篇 工商管理
  • 104 篇 医学
    • 72 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 27 篇 药学(可授医学、理...
  • 46 篇 农学
    • 27 篇 作物学
  • 40 篇 法学
  • 25 篇 经济学
  • 12 篇 文学
  • 10 篇 军事学
  • 6 篇 教育学
  • 2 篇 艺术学

主题

  • 70 篇 semantics
  • 47 篇 deep learning
  • 46 篇 feature extracti...
  • 41 篇 training
  • 39 篇 accuracy
  • 32 篇 quantum cryptogr...
  • 31 篇 computational mo...
  • 30 篇 federated learni...
  • 24 篇 privacy
  • 23 篇 neural networks
  • 20 篇 image segmentati...
  • 20 篇 forecasting
  • 20 篇 data models
  • 19 篇 graph neural net...
  • 19 篇 information retr...
  • 18 篇 generative adver...
  • 18 篇 knowledge graph
  • 18 篇 data mining
  • 16 篇 machine learning
  • 16 篇 correlation

机构

  • 204 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 71 篇 shandong provinc...
  • 63 篇 cas key laborato...
  • 63 篇 key laboratory o...
  • 51 篇 school of comput...
  • 49 篇 network and data...
  • 47 篇 tianjin key labo...
  • 46 篇 shandong enginee...
  • 43 篇 college of compu...
  • 40 篇 cas key laborato...
  • 34 篇 college of cyber...
  • 34 篇 school of comput...
  • 30 篇 cas center for e...
  • 30 篇 shaanxi key labo...
  • 29 篇 hefei national l...
  • 26 篇 anhui province k...
  • 26 篇 cas key lab of n...
  • 25 篇 school of comput...
  • 24 篇 shaanxi key labo...

作者

  • 190 篇 cheng xueqi
  • 146 篇 guo jiafeng
  • 49 篇 zhang ruqing
  • 47 篇 fan yixing
  • 43 篇 shen huawei
  • 43 篇 lan yanyan
  • 32 篇 jin xiaolong
  • 28 篇 pang liang
  • 25 篇 guo guang-can
  • 24 篇 bi keping
  • 21 篇 de rijke maarten
  • 21 篇 wang zhongmin
  • 21 篇 cao qi
  • 20 篇 chen yanping
  • 18 篇 xu jun
  • 18 篇 jie tian
  • 17 篇 xueqi cheng
  • 17 篇 chen wei
  • 16 篇 qin zhen
  • 16 篇 liu jun

语言

  • 1,493 篇 英文
  • 108 篇 其他
  • 36 篇 中文
检索条件"机构=CAS Key Laboratory of Network Data Science and Technology"
1635 条 记 录,以下是401-410 订阅
排序:
A Comparative Study of Training Objectives for Clarification Facet Generation
arXiv
收藏 引用
arXiv 2023年
作者: Ni, Shiyu Bi, Keping Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
Due to the ambiguity and vagueness of a user query, it is essential to identify the query facets for the clarification of user intents. Existing work on query facet generation has achieved compelling performance by se... 详细信息
来源: 评论
On the Robustness of Generative Retrieval Models: An Out-of-Distribution Perspective
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yu-An Zhang, Ruqing Guo, Jiafeng Chen, Wei Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
Recently, we have witnessed generative retrieval increasingly gaining attention in the information retrieval (IR) field, which retrieves documents by directly generating their identifiers. So far, much effort has been... 详细信息
来源: 评论
Scattered or Connected? An Optimized Parameter-efficient Tuning Approach for Information Retrieval
arXiv
收藏 引用
arXiv 2022年
作者: Ma, Xinyu Guo, Jiafeng Zhang, Ruqing Fan, Yixing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
Pre-training and fine-tuning have achieved significant advances in the information retrieval (IR). A typical approach is to fine-tune all the parameters of large-scale pre-trained models (PTMs) on downstream tasks. As... 详细信息
来源: 评论
CAME: Competitively Learning a Mixture-of-Experts Model for First-stage Retrieval
arXiv
收藏 引用
arXiv 2023年
作者: Cai, Yinqiong Fan, Yixing Bi, Keping Guo, Jiafeng Chen, Wei Zhang, Ruqing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
The first-stage retrieval aims to retrieve a subset of candidate documents from a huge collection both effectively and efficiently. Since various matching patterns can exist between queries and relevant documents, pre... 详细信息
来源: 评论
Ensemble Ranking Model with Multiple Pretraining Strategies for Web Search
arXiv
收藏 引用
arXiv 2023年
作者: Sun, Xiaojie Yu, Lulu Wang, Yiting Bi, Keping Guo, Jiafeng CAS Key Lab of Network Data Science and Technology ICT CAS University of Chinese Academy of Sciences Beijing China
An effective ranking model usually requires a large amount of training data to learn the relevance between documents and queries. User clicks are often used as training data since they can indicate relevance and are c... 详细信息
来源: 评论
When Do LLMs Need Retrieval Augmentation? Mitigating LLMs’ Overconfidence Helps Retrieval Augmentation
arXiv
收藏 引用
arXiv 2024年
作者: Ni, Shiyu Bi, Keping Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS China University of Chinese Academy of Sciences China
Large Language Models (LLMs) have been found to have difficulty knowing they do not possess certain knowledge and tend to provide specious answers in such cases. Retrieval Augmentation (RA) has been extensively studie... 详细信息
来源: 评论
An end-to-end progressive multi-task learning framework for medical named entity recognition and normalization  59
An end-to-end progressive multi-task learning framework for ...
收藏 引用
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
作者: Zhou, Baohang Cai, Xiangrui Zhang, Ying Yuan, Xiaojie College of Computer Science Nankai University Tianjin300350 China College of Cyber Science Nankai University Tianjin300350 China Tianjin Key Laboratory of Network and Data Security Technology Tianjin300350 China
Medical named entity recognition (NER) and normalization (NEN) are fundamental for constructing knowledge graphs and building QA systems. Existing implementations for medical NER and NEN are suffered from the error pr... 详细信息
来源: 评论
Regularization Mixup Adversarial Training: A Defense Strategy for Membership Privacy with Model Availability Assurance  2
Regularization Mixup Adversarial Training: A Defense Strateg...
收藏 引用
2nd International Conference on Big data and Privacy Computing, BDPC 2024
作者: Ding, Zehua Tian, Youliang Wang, Guorong Xiong, Jinbo College of Computer Science and Technology Guizhou University State Key Laboratory of Public Big Data Guiyang China College of Computer and Cyber Security Fujian Normal University Fujian Provincial Key Laboratory of Network Security and Cryptology Fuzhou China
Neural network models face two highly destructive threats in real-world applications: membership inference attacks (MIAs) and adversarial attacks (AAs). One compromises the model's confidentiality, leading to memb... 详细信息
来源: 评论
Secure real-time image protection scheme with near-duplicate detection in cloud computing
Secure real-time image protection scheme with near-duplicate...
收藏 引用
作者: Liu, Dengzhi Shen, Jian Wang, Anxi Wang, Chen Jiangsu Engineering Center of Network Monitoring Nanjing University of Information Science and Technology Nanjing210044 China State Key Laboratory of Cryptology Beijing100878 China Guizhou Provincial Key Laboratory of Public Big Data Guiyang550025 China
With advancements in technologies of the Internet and multi-media, various images need to be generated and transmitted anytime. Restricted by local constrained storage space, users can store their images with the assi... 详细信息
来源: 评论
Reproducibility Analysis and Enhancements for Multi-Aspect Dense Retriever with Aspect Learning
arXiv
收藏 引用
arXiv 2024年
作者: Bi, Keping Sun, Xiaojie Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology ICT CAS China University of Chinese Academy of Sciences China
Multi-aspect dense retrieval aims to incorporate aspect information (e.g., brand and category) into dual encoders to facilitate relevance matching. As an early and representative multi-aspect dense retriever, MADRAL l...
来源: 评论