咨询与建议

限定检索结果

文献类型

  • 507 篇 期刊文献
  • 416 篇 会议

馆藏范围

  • 923 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 618 篇 工学
    • 458 篇 计算机科学与技术...
    • 372 篇 软件工程
    • 172 篇 信息与通信工程
    • 82 篇 电气工程
    • 82 篇 生物工程
    • 69 篇 控制科学与工程
    • 59 篇 电子科学与技术(可...
    • 45 篇 光学工程
    • 40 篇 生物医学工程(可授...
    • 33 篇 化学工程与技术
    • 29 篇 机械工程
    • 24 篇 仪器科学与技术
    • 19 篇 交通运输工程
    • 16 篇 网络空间安全
    • 15 篇 航空宇航科学与技...
  • 373 篇 理学
    • 184 篇 数学
    • 109 篇 物理学
    • 92 篇 生物学
    • 64 篇 统计学(可授理学、...
    • 35 篇 化学
    • 30 篇 系统科学
    • 20 篇 地球物理学
  • 198 篇 管理学
    • 118 篇 图书情报与档案管...
    • 87 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 50 篇 医学
    • 39 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 27 篇 法学
    • 22 篇 社会学
  • 10 篇 经济学
  • 9 篇 文学
  • 8 篇 农学
  • 5 篇 教育学

主题

  • 43 篇 semantics
  • 34 篇 training
  • 31 篇 feature extracti...
  • 29 篇 deep learning
  • 20 篇 computational mo...
  • 19 篇 knowledge graph
  • 17 篇 generative adver...
  • 16 篇 machine learning
  • 16 篇 information retr...
  • 16 篇 data models
  • 15 篇 conferences
  • 15 篇 federated learni...
  • 14 篇 data mining
  • 14 篇 graph neural net...
  • 12 篇 neural networks
  • 12 篇 privacy
  • 11 篇 convolution
  • 11 篇 accuracy
  • 11 篇 forecasting
  • 10 篇 big data

机构

  • 171 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 63 篇 cas key laborato...
  • 43 篇 school of comput...
  • 34 篇 key laboratory o...
  • 32 篇 shandong provinc...
  • 26 篇 institute of com...
  • 21 篇 peng cheng labor...
  • 18 篇 data intelligenc...
  • 17 篇 school of cyber ...
  • 16 篇 institute of com...
  • 15 篇 beijing key labo...
  • 15 篇 key laboratory o...
  • 15 篇 cas key laborato...
  • 14 篇 cas center for e...
  • 14 篇 key laboratory o...
  • 13 篇 gansu provincial...
  • 12 篇 institute of art...
  • 12 篇 key laboratory o...
  • 12 篇 chongqing key la...

作者

  • 151 篇 cheng xueqi
  • 108 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 42 篇 shen huawei
  • 34 篇 jin xiaolong
  • 34 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 zhang ruqing
  • 23 篇 xu jun
  • 22 篇 cao qi
  • 21 篇 huang qingming
  • 20 篇 bai long
  • 19 篇 li zixuan
  • 19 篇 guan saiping
  • 18 篇 xu qianqian
  • 16 篇 xueqi cheng
  • 14 篇 niyato dusit
  • 14 篇 sun xiaoming
  • 11 篇 hu bin
  • 11 篇 yang zhiyong

语言

  • 858 篇 英文
  • 56 篇 其他
  • 15 篇 中文
检索条件"机构=CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology"
923 条 记 录,以下是111-120 订阅
排序:
LINKAGE: Listwise Ranking among Varied-Quality References for Non-Factoid QA Evaluation via LLMs
LINKAGE: Listwise Ranking among Varied-Quality References fo...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Yang, Sihui Bi, Keping Cui, Wanqing Guo, Jiafeng Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences Beijing China
Non-Factoid (NF) Question Answering (QA) is challenging to evaluate due to diverse potential answers and no objective criterion. The commonly used automatic evaluation metrics like ROUGE or BERTScore cannot accurately... 详细信息
来源: 评论
Augmentation-Aware Self-Supervision for data-Efficient GAN Training  37
Augmentation-Aware Self-Supervision for Data-Efficient GAN T...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Hou, Liang Cao, Qi Yuan, Yige Zhao, Songtao Ma, Chongyang Pan, Siyuan Wan, Pengfei Wang, Zhongyuan Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety and Security Institute of Computing Technology Chinese Academy of Sciences China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Kuaishou Technology China
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting. Previously proposed differentiable augmentation demonstrates improved data efficiency... 详细信息
来源: 评论
Identity-Preserving Adversarial Training for Robust network Embedding
收藏 引用
Journal of Computer science & technology 2024年 第1期39卷 177-191页
作者: 岑科廷 沈华伟 曹婍 徐冰冰 程学旗 Data Intelligence System Research Center Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China University of Chinese Academy of Sciences Beijing 101480China Beijing Academy of Artificial Intelligence Beijing 100000China Chinese Academy of Sciences Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of SciencesBeijing 100190China
network embedding,as an approach to learning low-dimensional representations of nodes,has been proved extremely useful in many applications,e.g.,node classification and link ***,existing network embed-ding models are ... 详细信息
来源: 评论
ICTNET at TREC 2019 Deep Learning Track  28
ICTNET at TREC 2019 Deep Learning Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participated in the Deep Learning Track at TREC 2019. We built a ranking system which combines a search component based on BM25 and a semantic matching component using pretraining knowledge. Our best run achieves N... 详细信息
来源: 评论
ICTNET at Trec 2019 Incident Streams Track  28
ICTNET at Trec 2019 Incident Streams Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Guangsheng, Kuang Kun, Zhang Jiabao, Zhang Xin, Zheng University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
Social medial become our public ways to share our information in our lives. Crisis management via social medial is becoming indispensable for its tremendous information. While deep learning shows surprising outcome in... 详细信息
来源: 评论
Evaluating natural language generation via unbalanced optimal transport  29
Evaluating natural language generation via unbalanced optima...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Chen, Yimeng Lan, Yanyan Xiong, Ruibin Pang, Liang Ma, Zhiming Cheng, Xueqi University of Chinese Academy of Sciences China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology CAS China Academy of Mathematics and Systems Science CAS China
Embedding-based evaluation measures have shown promising improvements on the correlation with human judgments in natural language generation. In these measures, various intrinsic metrics are used in the computation, i... 详细信息
来源: 评论
PreZ-DGGAN: A Drug Graph GAN Based on Pre-Learning of Implicit Variables  2nd
PreZ-DGGAN: A Drug Graph GAN Based on Pre-Learning of Implic...
收藏 引用
2nd International Conference on Applied Intelligence, ICAI 2024
作者: Liu, Yixin Fan, Yueqin Li, Zhipeng Zhang, Qinhu Big Data and Intelligent Computing Research Center Guangxi Academy of Science Nanning530007 China School of Mechanical Engineering Guangxi University Nanning530004 China Ningbo Institute of Digital Twin Eastern Institute of Technology Ningbo315201 China Institute for Regenerative Medicine Medical Innovation Center and State Key Laboratory of Cardiology School of Medicine Shanghai East Hospital Tongji University Shanghai200123 China College of Advanced Agricultural Sciences Zhejiang Agriculture and Forestry University Hangzhou311300 China
In the field of drug discovery and development, deep learning techniques have become a powerful tool to accelerate the discovery and development of new drugs. In the design and optimization of lead molecules, generati... 详细信息
来源: 评论
ICTNET at TREC 2019 News Track  28
ICTNET at TREC 2019 News Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ding, Yuyang Lian, Xiaoying Zhou, Houquan Liu, Zhaoge Ding, Hanxing Hou, Zhongni University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
This paper describes our work in the background linking task and entity ranking task in TREC 2018 News Track. We explore four methods in background linking task and two methods in entity ranking task. All of our metho...
来源: 评论
Sparse Word Embeddings Using 1 Regularized Online Learning
Sparse Word Embeddings Using 1 Regularized Online Learning
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Sun, Fei Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
Recently, Word2Vec tool has attracted a lot of interest for its promising performances in a variety of natural language processing (NLP) tasks. However, a critical issue is that the dense word representations learned ... 详细信息
来源: 评论
ICTNET at TREC 2019 Complex Answer Retrieval Track  28
ICTNET at TREC 2019 Complex Answer Retrieval Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Ren, Hongfei Xiong, Ruibin Zeng, Yutao Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participate in the Complex Answer Retrieval(CAR) track at TREC 2019. We applied several useful models in this work. In the rough ranking, we applied doc2query model to predict queries and retrieve using BM25. In th...
来源: 评论