咨询与建议

限定检索结果

文献类型

  • 496 篇 期刊文献
  • 419 篇 会议

馆藏范围

  • 915 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 602 篇 工学
    • 451 篇 计算机科学与技术...
    • 368 篇 软件工程
    • 166 篇 信息与通信工程
    • 81 篇 生物工程
    • 72 篇 电气工程
    • 67 篇 控制科学与工程
    • 56 篇 电子科学与技术(可...
    • 44 篇 光学工程
    • 40 篇 生物医学工程(可授...
    • 33 篇 化学工程与技术
    • 27 篇 机械工程
    • 24 篇 仪器科学与技术
    • 19 篇 交通运输工程
    • 15 篇 网络空间安全
    • 14 篇 航空宇航科学与技...
  • 366 篇 理学
    • 181 篇 数学
    • 108 篇 物理学
    • 91 篇 生物学
    • 63 篇 统计学(可授理学、...
    • 35 篇 化学
    • 29 篇 系统科学
    • 19 篇 地球物理学
  • 194 篇 管理学
    • 117 篇 图书情报与档案管...
    • 85 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 47 篇 医学
    • 38 篇 临床医学
    • 33 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 27 篇 法学
    • 22 篇 社会学
  • 10 篇 经济学
  • 9 篇 文学
  • 7 篇 农学
  • 5 篇 教育学

主题

  • 42 篇 semantics
  • 32 篇 training
  • 30 篇 feature extracti...
  • 29 篇 deep learning
  • 19 篇 knowledge graph
  • 19 篇 computational mo...
  • 17 篇 generative adver...
  • 16 篇 machine learning
  • 16 篇 information retr...
  • 15 篇 conferences
  • 15 篇 data mining
  • 15 篇 data models
  • 14 篇 graph neural net...
  • 14 篇 federated learni...
  • 12 篇 neural networks
  • 12 篇 privacy
  • 11 篇 convolution
  • 11 篇 accuracy
  • 11 篇 forecasting
  • 10 篇 big data

机构

  • 171 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 62 篇 cas key laborato...
  • 43 篇 school of comput...
  • 34 篇 key laboratory o...
  • 31 篇 shandong provinc...
  • 26 篇 institute of com...
  • 21 篇 peng cheng labor...
  • 18 篇 data intelligenc...
  • 17 篇 school of cyber ...
  • 16 篇 institute of com...
  • 15 篇 beijing key labo...
  • 15 篇 key laboratory o...
  • 15 篇 cas key laborato...
  • 14 篇 cas center for e...
  • 14 篇 key laboratory o...
  • 13 篇 institute of art...
  • 13 篇 gansu provincial...
  • 12 篇 chongqing key la...
  • 12 篇 institute for ai...

作者

  • 151 篇 cheng xueqi
  • 108 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 42 篇 shen huawei
  • 34 篇 jin xiaolong
  • 34 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 zhang ruqing
  • 22 篇 xu jun
  • 22 篇 cao qi
  • 21 篇 huang qingming
  • 20 篇 bai long
  • 19 篇 li zixuan
  • 19 篇 guan saiping
  • 18 篇 xu qianqian
  • 17 篇 xueqi cheng
  • 14 篇 sun xiaoming
  • 12 篇 niyato dusit
  • 11 篇 hu bin
  • 11 篇 yang zhiyong

语言

  • 853 篇 英文
  • 53 篇 其他
  • 15 篇 中文
检索条件"机构=CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology"
915 条 记 录,以下是121-130 订阅
排序:
Adversarial Learning data Augmentation for Graph Contrastive Learning in Recommendation
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Junjie Cao, Qi Xie, Ruobing Zhang, Shaoliang Xia, Feng Shen, Huawei Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China WeChat Tencent Beijing China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Recently, Graph Neural networks (GNNs) achieve remarkable success in Recommendation. To reduce the influence of data sparsity, Graph Contrastive Learning (GCL) is adopted in GNN-based CF methods for enhancing performa... 详细信息
来源: 评论
Challenges and Advances in Generative Information Retrieval  22
Challenges and Advances in Generative Information Retrieval
收藏 引用
22nd Chinese National Conference on Computational Linguistics, CCL 2023
作者: Fan, Yixing Tang, Yubao Chen, Jiangui Zhang, Ruqing Guo, Jiafeng CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100190 China
Information retrieval (IR) aims to seek relevant information in response to user queries. Existing IR systems mainly rely on the "index-retrieve-then-rank" framework, which models the complex retrieval tasks... 详细信息
来源: 评论
Security Enhancing for IRS-Aided NOMA networks via Constructive Interference Precoding  10
Security Enhancing for IRS-Aided NOMA Networks via Construct...
收藏 引用
10th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, MAPE 2024
作者: Bao, Jingying Cao, Yang Qin, Xiaoqi Xu, Lexi Zhao, Nan Niyato, Dusit School of Information and Communication Engineering Dalian University of Technology Dalian116024 China Singapore University of Technology and Design Engineering Systems and Design Pillar Singapore487372 Singapore Beijing University of Posts and Telecommunications State Key Laboratory of Networking and Switching Technology Beijing100876 China Research Institute China United Network Communications Corporation Beijing100048 China College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore
In this paper, we propose a constructive interference precoding (CIP) enabled secure intelligent reflecting surface (IRS)-non-orthogonal multiple access (NOMA) scheme, lever-aging both the inter-user interference and ... 详细信息
来源: 评论
Text Information Mining in Cyberspace: An Information Extraction Method Based on T5 and keyBERT  9
Text Information Mining in Cyberspace: An Information Extrac...
收藏 引用
9th IEEE International Conference on data science in Cyberspace, DSC 2024
作者: Liu, Kuan Li, Yumei Qi, Yuanhua Qi, Ning Zhai, Mengran Qilu University of Technology Shandong Academy of Sciences Information Research Institute Shandong Academy of Sciences Jinan China Qilu University of Technology Shandong Academy of Sciences Shandong Institute of Economy and Informatization Development Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center National Supercomputer Center in Jinan Jinan China Qilu University of Technology Shandong Academy of Sciences Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center National Supercomputer Center in Jinan Jinan China SHANDONG SCICOM Information and Economy Research Institute Co. Ltd Jinan China Shandong Institute of Economy and Informatization Development Jinan China
With the development of the digital economy and the advent of the big data era, the rapid growth of textual information in cyberspace has placed higher demands on information processing technology. This paper proposes... 详细信息
来源: 评论
Information and Sensing Beamforming Optimization for Multi-User Multi-Target MIMO ISAC Systems  48
Information and Sensing Beamforming Optimization for Multi-U...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, IcasSP 2023
作者: Zhu, Minghe Li, Lei Xia, Shuqiang Chang, Tsung-Hui The Chinese University of Hong Kong School of Science & Engineering Shenzhen China Shenzhen Research Institute of Big Data China ZTE Corporation China State Key Laboratory of Mobile Network and Mobile Multimedia Technology China
In this paper, we consider the joint beamforming design for simultaneous sensing and communication in a wireless multi-user system. Different from the existing works that mostly are for single target, we consider sens... 详细信息
来源: 评论
D4M: dataset Distillation via Disentangled Diffusion Model
D4M: Dataset Distillation via Disentangled Diffusion Model
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Duo Su Junjie Hou Weizhi Gao Yingjie Tian Bowen Tang UCAS School of Computer Science and Technology Research Center on Fictitious Economy and Data Science CAS Key Laboratory of Big Data Mining and Knowledge Management CAS UCAS Sino-Danish College Department of Computer Science NCSU UCAS School of Economics and Management UCAS MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation CAS Institute of Computing Technology
dataset distillation offers a lightweight synthetic dataset for fast network training with promising test accuracy. To imitate the performance of the original dataset, most approaches employ bi-level optimization and ... 详细信息
来源: 评论
Suppress content shift: better diffusion features via off-the-shelf generation techniques  24
Suppress content shift: better diffusion features via off-th...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Benyuan Meng Qianqian Xu Zitai Wang Zhiyong Yang Xiaochun Cao Qingming Huang Institute of Information Engineering CAS and School of Cyber Security University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS and Peng Cheng Laboratory Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS School of Computer Science and Tech. University of Chinese Academy of Sciences School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University School of Computer Science and Tech. University of Chinese Academy of Sciences and Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS and Key Laboratory of Big Data Mining and Knowledge Management CAS
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
The Adaptive Fault-tolerant Routing Based on an Improved Local Security Information Model of the Exchanged Hypercube  21
The Adaptive Fault-tolerant Routing Based on an Improved Loc...
收藏 引用
21st IEEE International Symposium on Parallel and Distributed Processing with Applications, 13th IEEE International Conference on Big data and Cloud computing, 16th IEEE International Conference on Social computing and networking and 13th International Conference on Sustainable computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2023
作者: Zhang, Yazhi Luo, Chuanwen Wang, Guijuan Zhang, Li Lv, Mengjie Yu, Jiguo Qilu University of Technology School of Computer Science and Technology Jinan China Beijing Forestry University School of Information Science and Technology Beijing China Qilu University of Technology Shandong Academy of Sciences Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Jinan China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Computer Networks Jinan China Nanjing University of Posts and Telecommunications College of Computer Nanjing China Qilu University of Technology Shandong Academy of Sciences Big Data Research Institute Jinan China
With the increasing amount of computation in high-performance computing, the scale of interconnection networks is becoming larger and larger. It is inevitable that processors or links in the network become faulty. The... 详细信息
来源: 评论
XRL-SHAP-Cache:an explainable reinforcement learning approach for intelligent edge service caching in content delivery networks
收藏 引用
science China(Information sciences) 2024年 第7期67卷 46-71页
作者: Xiaolong XU Fan WU Muhammad BILAL Xiaoyu XIA Wanchun DOU Lina YAO Weiyi ZHONG School of Software Nanjing University of Information Science and Technology School of Computing and Communications Lancaster University School of Computing Technologies Royal Melbourne Institute of Technology State Key Laboratory for Novel Software Technology Nanjing University School of Computer Science and Engineering University of New South Wales Data 61 Commonwealth Scientific and Industrial Research Organization School of Computer Science Qufu Normal University
Content delivery networks(CDNs) play a pivotal role in the modern internet infrastructure by enabling efficient content delivery across diverse geographical regions. As an essential component of CDNs, the edge caching... 详细信息
来源: 评论
Unlocking the Power of Large Language Models for Entity Alignment
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Xuhui Shen, Yinghan Shi, Zhichao Xu, Chengjin Li, Wei Li, Zixuan Guo, Jian Shen, Huawei Wang, Yuanzhuo CAS Key Laboratory of AI Safety Institute of Computing Technology CAS China School of Computer Science and Technology University of Chinese Academy of Science China IDEA Research International Digital Economy Academy China
Entity Alignment (EA) is vital for integrating diverse knowledge graph (KG) data, playing a crucial role in data-driven AI applications. Traditional EA methods primarily rely on comparing entity embeddings, but their ... 详细信息
来源: 评论