咨询与建议

限定检索结果

文献类型

  • 491 篇 期刊文献
  • 416 篇 会议

馆藏范围

  • 907 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 603 篇 工学
    • 451 篇 计算机科学与技术...
    • 369 篇 软件工程
    • 166 篇 信息与通信工程
    • 81 篇 生物工程
    • 72 篇 电气工程
    • 67 篇 控制科学与工程
    • 56 篇 电子科学与技术(可...
    • 45 篇 光学工程
    • 40 篇 生物医学工程(可授...
    • 33 篇 化学工程与技术
    • 27 篇 机械工程
    • 24 篇 仪器科学与技术
    • 19 篇 交通运输工程
    • 15 篇 网络空间安全
    • 14 篇 航空宇航科学与技...
  • 366 篇 理学
    • 181 篇 数学
    • 109 篇 物理学
    • 91 篇 生物学
    • 63 篇 统计学(可授理学、...
    • 35 篇 化学
    • 29 篇 系统科学
    • 19 篇 地球物理学
  • 194 篇 管理学
    • 117 篇 图书情报与档案管...
    • 85 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 47 篇 医学
    • 38 篇 临床医学
    • 33 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 27 篇 法学
    • 22 篇 社会学
  • 10 篇 经济学
  • 9 篇 文学
  • 7 篇 农学
  • 5 篇 教育学

主题

  • 42 篇 semantics
  • 32 篇 training
  • 30 篇 feature extracti...
  • 29 篇 deep learning
  • 19 篇 knowledge graph
  • 19 篇 computational mo...
  • 17 篇 generative adver...
  • 16 篇 machine learning
  • 16 篇 information retr...
  • 15 篇 conferences
  • 15 篇 data models
  • 14 篇 data mining
  • 14 篇 graph neural net...
  • 14 篇 federated learni...
  • 12 篇 neural networks
  • 12 篇 privacy
  • 11 篇 convolution
  • 11 篇 accuracy
  • 11 篇 forecasting
  • 10 篇 big data

机构

  • 169 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 62 篇 cas key laborato...
  • 43 篇 school of comput...
  • 33 篇 key laboratory o...
  • 31 篇 shandong provinc...
  • 26 篇 institute of com...
  • 21 篇 peng cheng labor...
  • 18 篇 data intelligenc...
  • 17 篇 school of cyber ...
  • 16 篇 institute of com...
  • 15 篇 beijing key labo...
  • 15 篇 key laboratory o...
  • 15 篇 cas key laborato...
  • 14 篇 cas center for e...
  • 14 篇 key laboratory o...
  • 13 篇 gansu provincial...
  • 12 篇 institute of art...
  • 12 篇 chongqing key la...
  • 12 篇 institute for ai...

作者

  • 151 篇 cheng xueqi
  • 108 篇 guo jiafeng
  • 48 篇 lan yanyan
  • 42 篇 shen huawei
  • 34 篇 jin xiaolong
  • 34 篇 fan yixing
  • 30 篇 pang liang
  • 28 篇 zhang ruqing
  • 22 篇 xu jun
  • 22 篇 cao qi
  • 21 篇 huang qingming
  • 20 篇 bai long
  • 19 篇 li zixuan
  • 19 篇 guan saiping
  • 18 篇 xu qianqian
  • 16 篇 xueqi cheng
  • 14 篇 sun xiaoming
  • 12 篇 niyato dusit
  • 11 篇 hu bin
  • 11 篇 yang zhiyong

语言

  • 844 篇 英文
  • 54 篇 其他
  • 15 篇 中文
检索条件"机构=CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology"
907 条 记 录,以下是321-330 订阅
排序:
Learning to truncate ranked lists for information retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Chen Zhang, Ruqing Guo, Jiafeng Fan, Yixing Lan, Yanyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Ranked list truncation is of critical importance in a variety of professional information retrieval applications such as patent search or legal search. The goal is to dynamically determine the number of returned docum... 详细信息
来源: 评论
Query understanding via intent description generation
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Ruqing Guo, Jiafeng Fan, Yixing Lan, Yanyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Query understanding is a fundamental problem in information retrieval (IR), which has attracted continuous attention through the past decades. Many different tasks have been proposed for understanding users’ search q...
来源: 评论
LegoNet: A Fast and Exact Unlearning Architecture
arXiv
收藏 引用
arXiv 2022年
作者: Yu, Sihao Sun, Fei Guo, Jiafeng Zhang, Ruqing Cheng, Xueqi University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Machine unlearning aims to erase the impact of specific training samples upon deleted requests from a trained model. Retraining the model on the retained data after deletion is an effective but not efficient way due t... 详细信息
来源: 评论
Controlling risk of web question answering
arXiv
收藏 引用
arXiv 2019年
作者: Su, Lixin Guo, Jiafeng Fan, Yixing Lan, Yanyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Web question answering (QA) has become an indispensable component in modern search systems, which can significantly improve users’ search experience by providing a direct answer to users’ information need. This coul... 详细信息
来源: 评论
Visual Named Entity Linking: A New dataset and A Baseline
arXiv
收藏 引用
arXiv 2022年
作者: Sun, Wenxiang Fan, Yixing Guo, Jiafeng Zhang, Ruqing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Visual Entity Linking (VEL) is a task to link regions of images with their corresponding entities in Knowledge Bases (KBs), which is beneficial for many computer vision tasks such as image retrieval, image caption, an... 详细信息
来源: 评论
Adversarial Immunization for Certifiable Robustness on Graphs
arXiv
收藏 引用
arXiv 2020年
作者: Tao, Shuchang Shen, Huawei Cao, Qi Hou, Liang Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Despite achieving strong performance in semi-supervised node classification task, graph neural networks (GNNs) are vulnerable to adversarial attacks, similar to other deep learning models. Existing researches focus on... 详细信息
来源: 评论
Locally smoothed neural networks
arXiv
收藏 引用
arXiv 2017年
作者: Pang, Liang Lan, Yanyan Xu, Jun Guo, Jiafeng Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Convolutional Neural networks (CNN) and the locally connected layer are limited in capturing the importance and relations of different local receptive fields, which are often crucial for tasks such as face verificatio... 详细信息
来源: 评论
A linguistic study on relevance modeling in information retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Fan, Yixing Guo, Jiafeng Ma, Xinyu Zhang, Ruqing Lan, Yanyan Cheng, Xueqi University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Relevance plays a central role in information retrieval (IR), which has received extensive studies starting from the 20th century. The definition and the modeling of relevance has always been critical challenges in bo... 详细信息
来源: 评论
The Impact of Heterogeneous Spreading Abilities of network Ties on Information Spreading
The Impact of Heterogeneous Spreading Abilities of Network T...
收藏 引用
International Conference on Computer and Information technology (CIT)
作者: Chengeng Ou Xiaolong Jin Yuanzhuo Wang Wei Chen Xueqi Cheng University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Understanding the dynamics of information spreading over social networks has been of great interest for a long time. It has been convincingly demonstrated that the topology of a network can significantly affect inform... 详细信息
来源: 评论
FedMatch: Federated learning over heterogeneous question answering data
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Jiangui Zhang, Ruqing Guo, Jiafeng Fan, Yixing Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Question Answering (QA), a popular and promising technique for intelligent information access, faces a dilemma about data as most other AI techniques. On one hand, modern QA methods rely on deep learning models which ... 详细信息
来源: 评论